# ORIGINAL PAPER

# Mechanism of the gas-phase decomposition of trifluoro-, trichloro-, and tribromomethanols in the presence of hydrogen halides

Katarzyna Brudnik · Jerzy T. Jodkowski · Dariusz Sarzyński · Andrzej Nowek

Received: 11 October 2010/Accepted: 24 January 2011/Published online: 2 March 2011 © Springer-Verlag 2011

Abstract Ab initio calculations at the G2 level were used in a theoretical analysis of the kinetics of the decomposition of trifluoro-, trichloro-, and tribromomethanols. The highpressure limiting rate coefficients  $k_{diss,\infty}$  for the thermal dissociation of CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH were calculated using the conventional transition state theory. The results of potential surface calculations show that in the presence of the hydrogen halides HX (X = F, Cl, and Br), considerably lower energy pathways are accessible for the decomposition of CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH. The mechanism of the reactions appears to be complex and consists of three consecutive elementary processes with the formation of pre- and post-reaction adducts. The presence of hydrogen halides considerably decreases the energy barrier for the bimolecular decomposition of the alcohols CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH. Results of this study indicate that hydrogen halides can considerably accelerate the homogeneous decomposition of perhalogenated methanols when they are present in the reaction area at sufficiently high concentrations. However, the atmospheric concentrations of hydrogen halides are too small for efficient removal of atmospheric CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH.

**Keywords** Gas-phase kinetics · Tribromometanol · Trichloromethanol · Trifluoromethanol

e-mail: jurek@kchfiz.am.wroc.pl

#### Introduction

The perhalogenated alcohols trifluoro-, trichloro-, and tribromomethanol occur in the atmosphere as products of the photofragmentation of alternative halocarbons [1, 2]. They take part in many degradation processes in the atmosphere and in various combustion systems [2]. In the oxygen-rich atmosphere, the primary atmospheric fate of alkyl radicals is the addition reaction with molecular oxygen. The halogenated methyl radicals CF<sub>3</sub>, CCl<sub>3</sub>, and CBr<sub>3</sub> are converted into the corresponding methylperoxy structures  $CY_3O_2$  (Y = F, Cl, and Br), which then react with nitric oxide, generating trifluoro-, trichloro-, and tribromomethoxy CY<sub>3</sub>O radicals [1, 3]. The subsequent fate of the CY<sub>3</sub>O radicals is considerably less known. However, results of kinetic studies suggest that the loss of CY<sub>3</sub>O radicals in the lower atmosphere is mainly related to reactions with nitrogen oxides. Alternative pathways, i.e., reactions between CY<sub>3</sub>O, H<sub>2</sub>O, and hydrogen halides (HX) or hydrocarbons (RH), lead to the formation of the respective perhalogenated alcohols:

$$CY_3O + (H_2O, HX, RH) \rightarrow CY_3OH + (OH, X, R)$$
(1)

where X, Y = F, Cl, and Br. The formed CY<sub>3</sub>OH alcohols may act as temporary halogen reservoir species. The subsequent reactions of CY<sub>3</sub>OH molecule leading to its removal from the atmosphere are thus important for a better understanding of the possible processes of CY<sub>3</sub>O loss. Therefore the kinetics and mechanism of the decomposition of the perhalogenated alcohols have become the subject of several experimental and theoretical investigations [4–29].

Trifluoromethanol CF<sub>3</sub>OH has been the most frequently studied. Results of theoretical studies [11-29] show that the CF<sub>3</sub>O-H bond is unusually strong, which can be attributed

<sup>K. Brudnik · J. T. Jodkowski (⊠) · D. Sarzyński · A. Nowek
Department of Physical Chemistry, Wroclaw Medical University,
pl. Nankiera 1,
50-140, Wroclaw, Poland</sup> 

to the negative hyperconjugative effect of the CF<sub>3</sub> group. This implies high activation energy values for hydrogen abstraction from CF<sub>3</sub>OH, which has been confirmed by experimental investigations [4–7]. The photolysis of CF<sub>3</sub>OH has also been shown to be inefficient [5, 6]. The thermal decomposition of trifluoromethanol with the elimination of hydrogen fluoride

$$CF_3OH \rightarrow COF_2 + HF$$
 (2)

was studied theoretically[11, 13–15, 29] and experimentally [4–8]. The energy barrier calculated at various levels of theory is high (150-170 kJ mol<sup>-1</sup>), which results in a very small reaction rate at ambient temperature. However, there is some experimental evidence strongly suggesting that atmospheric CF<sub>3</sub>OH can be efficiently decomposed heterogeneously on H<sub>2</sub>O surfaces [10]. Theoretical investigations show that water can introduce many unusual features into the kinetics and energetics of some chemical reaction systems [10, 30–32]. *Ab initio* calculations indicate unambiguously that the decomposition of CF<sub>3</sub>OH on water aerosols seems to be a major process in the loss of atmospheric CF<sub>3</sub>OH [10, 14, 15].

The kinetics of the thermal decomposition of trichloromethanol  $CCl_3OH$  to phosgene  $COCl_2$  and hydrogen chloride HCl:

$$CCl_3OH \rightarrow COCl_2 + HCl$$
 (3)

was investigated experimentally and theoretically [20–24, 29]. Several smog-chamber experiments show the kinetic behavior of CCl<sub>3</sub>OH to be very similar to that of CF<sub>3</sub>OH. The measured rate of CCl<sub>3</sub>OH decay strongly depends on the geometry and surface of the reactor walls, which implies a heterogeneous mechanism of CCl<sub>3</sub>OH decomposition. A value of  $1.05 \times 10^{-2}$  s<sup>-1</sup> was estimated [22] as the upper limit of the overall rate coefficient k<sub>3</sub> at room temperature. This is in serious disagreement with the results of theoretical investigations [21]. The height of the energy barrier for the thermal dissociation of CCl<sub>3</sub>OH calculated at different levels of theory is high, over 125 kJ mol<sup>-1</sup>, and corresponds to a value of the first-order rate coefficient for CCl<sub>3</sub>OH decomposition which is 8 orders of magnitude lower than that estimated experimentally.

There is no experimental information on the kinetics of the unimolecular decomposition of CBr<sub>3</sub>OH:

$$CBr_3OH \rightarrow COBr_2 + HBr.$$
 (4)

However, the structural similarity of  $CBr_3OH$  to  $CCl_3OH$ and  $CF_3OH$  suggests that the mechanism of  $CBr_3OH$ decomposition is likely analogous to reactions (2) and (3).

Experimental investigations showed that the introduction of water vapor into the reaction chamber leads to acceleration of the decomposition of  $CF_3OH$  [10]. The

incorporation of CF<sub>3</sub>OH into water droplets or its decomposition on aerosols is thought to dominate the loss processes of atmospheric CF<sub>3</sub>OH. The results of *ab initio* calculations show the existence of a lower energy pathway on the potential energy surface available in the reaction systems CF<sub>3</sub>OH+H<sub>2</sub>O, CCl<sub>3</sub>OH+H<sub>2</sub>O, and CBr<sub>3</sub>OH+H<sub>2</sub>O [14, 29]. An analysis of the calculated potential energy surface for the CY<sub>3</sub>OH+H<sub>2</sub>O (Y = F, Cl and Br) reaction systems allows an explanation of the role of water in the decomposition of CY<sub>3</sub>OH molecules [29]. A water molecule approaching a CY<sub>3</sub>OH molecule is oriented in such a manner that enables the formation of a six-atom ring structure which supports the transport and exchange of hydrogen atoms inside the ring.

It would seem that hydrogen halides may play a similar role in the catalytic decomposition of  $CY_3OH$ . Therefore we performed *ab initio* calculations of the potential energy surface of the  $CY_3OH$ +HX (where X, Y = F, Cl, and Br) reaction system

$$CY_3OH + HX \rightarrow CY_2O + HY + HX$$
 (5)

to gain insight into the reaction mechanism. Results of the calculations will provide the molecular information necessary for computational methods used to evaluate the reaction rate coefficients.

#### **Computational details**

The perhalogenated alcohols CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH have been studied theoretically quite extensively using quantum mechanical *ab initio* methods at various levels of theory. Because the results obtained by the G2 method [33] reproduce the structural parameters and molecular properties [25–29] of CY<sub>3</sub>OH molecules very well, we decided to use this level of theory in our investigations. All quantum mechanical *ab initio* calculations were carried out using the Gaussian 03 program [34] package. Electron correlation was estimated by Møller-Plesset perturbation theory at the second (MP2) and up to the fourth order including all single, double, triple, and quadruple excitations (MP4SDTQ). The frozen core approximation was kept throughout.

The rate coefficients of the reactions studied were analyzed in terms of conventional transition state theory (TST) [35, 36] according to the equation:

$$k_{\rm TST} = \kappa_{\rm T} \sigma \frac{k_{\rm B} T}{h} \exp\left(\frac{\Delta S^{\sharp}}{R}\right) \exp\left(-\frac{\Delta H^{\sharp}}{RT}\right), \tag{6}$$

where  $\kappa_{\rm T}$  is the tunneling correction factor,  $\sigma$  a symmetry factor related to degeneracy of the reaction path, and k<sub>B</sub> and *h* the Boltzmann and Planck constants, respectively.

 $\Delta S^{\neq}$  is the activation entropy and  $\Delta H^{\neq}$  the activation enthalpy of the reaction under investigation. Vibrational and rotational contributions to the thermodynamic functions were derived by the classical harmonic-oscillator rigid-rotor approximation (no free or internal rotation was considered).

The rate coefficient calculation of a reaction with a high energy barrier should take into consideration a tunneling effect. This is usually inserted in the rate coefficient by the tunneling correction factor  $\kappa_{\rm T}$  as:

$$\mathbf{k} = \kappa_{\mathrm{T}} \, \mathbf{k}_{\mathrm{TST}}.\tag{7}$$

Including the tunneling effect may distinctly improve the values of the calculated rate coefficients, especially at low temperatures. The calculated rate coefficients are given in Tables 4, 5, 6. The tunneling correction factors  $\kappa_{\rm T}$  were evaluated from the simple Wigner's expression [35]

$$\kappa_{\rm T} \simeq 1 - \frac{1}{24} \left( \frac{h \nu^{\neq}}{k_{\rm B} T} \right)^2, \tag{8}$$

with the imaginary frequencies  $v^{\neq}$  of the transition state obtained in the geometry optimization performed at a higher level of theory, i.e., from MP2/6-31G(d) calculations.

### **Results and discussion**

It is well known that the G2 method [33] well reproduces the structural parameters and molecular properties of a wide group of organic compounds. The halogenated alcohols have become the subject of theoretical investigations at several levels of theory because of their possible role in the destruction of atmospheric ozone. Results of calculations show a distinct advantage of the G2 approach, which better reproduces the molecular properties of this class of compounds. The reliable values of the thermochemical properties and vibrational frequencies obtained by G2 methodology for perhalogenated methanols by us [16–18, 24, 29] and other authors [26–28] favor the use of this level of theory for a description of the structural parameters of the investigated molecular systems.

The geometries of the molecular structures taking part in the reaction mechanism  $CY_3OH+HX$ , (X, Y = F, Cl and Br) were optimized independently at the SCF/6-31G(d) and MP2/6-31G(d) levels. The molecular arrangements and definitions of the structural parameters used in the geometry optimization are given in Fig. 1.

At each level of theory the potential energy surface was explored independently for the possible existence of transition states and intermediate complexes. The optimized geometrical parameters at the MP2/6-31G(d) level, the harmonic vibrational frequencies (scaled by 0.8929) obtained at the SCF/6-31G(d) level, and the total G2 energies for the CY<sub>3</sub>OH, CY<sub>2</sub>O, and CY<sub>3</sub>OH...HX structures are given in Tables 1, 2 and 3. The structural parameters of the HX molecules were published elsewhere [17].

Homogenous decomposition of CF<sub>3</sub>OH

The most stable structure of CF<sub>3</sub>OH appears to possess a staggered conformation with  $C_s$  molecular symmetry. Trifluoromethanol is a molecular structure with an unusually strong CF<sub>3</sub>O–H bond. The bond dissociation energy of CF<sub>3</sub>O–H is distinctly greater than that of CH<sub>3</sub>OH and comparable to or even slightly greater than that of HO-H in water. This anomalously large CF<sub>3</sub>O-H bond strength is usually attributed to the negative hyperconjugation effect of the CF<sub>3</sub> group [37]. Except for the C-F bond lengths, the geometrical parameters of CF<sub>3</sub>OH are very similar to those of methanol.

The saddle point CF<sub>3</sub>OH<sup> $\neq$ </sup>, denoted by TS1F, for the decomposition CF<sub>3</sub>OH $\rightarrow$ CF<sub>2</sub>O+HF also has C<sub>s</sub> symmetry, with the C-F<sub>1</sub> and O-H<sub>0</sub> bonds oriented almost in parallel and located in the symmetry plane F<sub>1</sub>COH<sub>0</sub>. The lengths of the breaking bonds (O-H<sub>0</sub>: 1.25 Å, C-F<sub>1</sub>: 1.72 Å) are 30% longer than the corresponding bonds in CF<sub>3</sub>OH. The thermal decomposition of CF<sub>3</sub>OH $\rightarrow$ CF<sub>2</sub>O+HF is an almost thermoneutral process, related to the very high energy barrier of 157 kJ mol<sup>-1</sup> obtained at the G2 level. This implies either small values of the rate coefficient or its strong dependence on temperature.

The pre-reaction adducts CF<sub>3</sub>OH...HX, designated as MC1F-HX, are the most stable structures in all the studied CF<sub>3</sub>OH+HX reaction systems. The thermal stabilities of the MC1F-HX complexes with respect to the corresponding reactants are very similar and cover a range of 45-50 kJ mol<sup>-1</sup> at 0 K. The geometrical parameters of these hydrogen-bonding complexes retain the values which appear in the isolated reactants, i.e., the CF<sub>3</sub>OH and HX molecules. Only the contact bonds  $F_1$ -H and XH<sub>0</sub> are considerably longer than the analogous H-X bonds in the hydrogen halides. The binding energy of the preadduct, CF<sub>3</sub>OH-HX (MC1F-HX) is described by the strength of the formed F...H and H<sub>o</sub>...X hydrogen bonds. The dissociation energy of MC1F-HX complexes toward reactants increases as CF<sub>3</sub>OH...BrH < CF<sub>3</sub>OH...ClH < CF<sub>3</sub>OH...FH, which is in agreement with the strength of the H-X bonds, H-Br < H-Cl < H-F.

The transition states  $(CF_3OH..HX)^{\neq}$ , denoted by TS2F-HX, describe the decomposition of trifluoromethanol in the gas phase in the presence of the respective hydrogen halide molecule HX. Weakening of the H-X bond, which appears when an HX molecule approaches CF<sub>3</sub>OH, enables the formation of a six-atom (C...F<sub>1</sub>...H...X... Fig. 1 Definition of the geometrical parameters of the molecular structures taking part in the mechanism of the  $CY_3OH+$ HX reactions



 $H_0...O$  ring structure. This structure supports the abstraction of  $F_1$  and  $H_0$  atoms from the alcohol and plays an important role in the reaction mechanism of the HXcatalyzed decomposition of CF<sub>3</sub>OH. A comparative analysis of the structural parameters shows that the transition states  $(CF_3OH..HX)^{\neq}$  are considerably looser molecular structures than TS1F. The angular parameters of TS2F-HX, especially of F<sub>1</sub>CO and COH<sub>0</sub>, are very close to those of the isolated CF<sub>3</sub>OH molecule. The length of the critical bond H...F<sub>1</sub>, which is 2.44 Å in the CF<sub>3</sub>OH molecule, undergoes only a slight change in the molecular structures of the transition states TS2F-HX to 2.29 Å, 2.46 Å, and 2.52 Å for TS2F-HF, TS2F-HCl, and TS2F-HBr, respectively. This is in contrast to TS1F, whose  $H_0$ ... F bond length of 1.19 Å is half that of the TS2F-HX structures. That is why the formation of the TS2F-HX transition states requires considerably fewer changes in the structures of the reactants than the formation of TS1F. Consequently, the transformation of the reactant(s) into the respective transition state in the CF<sub>3</sub>OH+HX reaction system proceeds easily and requires less energy than the thermal decomposition of CF<sub>3</sub>OH.

The post-reaction adducts  $CF_2O...HF...HX$ , denoted by MC2F-HX, are molecular structures which consist of three subunits,  $CF_2O$ , HF, and HX, bonded in a molecular complex. The geometrical parameters of these subunits are very close to those of the isolated molecules. The contact distances  $C...F_1$ ,  $O...H_0$ , and  $H_0...X$ calculated at the MP2/6-31G(d) level are almost twice those in the isolated reactants. Decay of the post-reaction adducts MC2F-HX yields the final reaction products,  $CF_2O$  and HF. The reaction mechanism of the HX-accelerated decomposition of CF<sub>3</sub>OH consists of three elementary steps:

$$CF_{3}OH + HX \leftrightarrows CF_{3}OH...HX \leftrightarrows CF_{2}O...HF...HX$$
$$\rightarrow CF_{2}O + HF + HX.$$
(9)

The first and third elementary processes are recombination and unimolecular dissociation, while the second is related to an energy barrier.

The profiles of the potential energy surface calculated for the HX-accelerated decomposition of CF<sub>3</sub>OH are shown in Fig. 2. The first elementary step of the reaction mechanism is related to the formation of the pre-reaction adduct MC1F-HX. The next step leads, via TS2F-HX, directly to the other molecular complex, MC2F-HX, which dissociates to the final reaction products. This mechanism explains the catalytic influence of the HX molecule, which acts as a molecular agent in promoting the transport and exchange of hydrogen atoms inside the formed ring. An analysis of the structural parameters shows that the formation of TS2F-HX transition states requires fewer changes in the structure of the reactants than the formation of TS1F. This results in a decrease in the activation barrier. The high energy barrier of 157 kJ mol<sup>-1</sup> for the thermal dissociation of CF<sub>3</sub>OH becomes distinctly smaller under the influence of hydrogen halides, achieving values of 66 kJ mol<sup>-1</sup>, 94 kJ mol<sup>-1</sup>, and 93 kJ mol<sup>-1</sup> for the CF<sub>3</sub>OH +HF, CF<sub>3</sub>OH+HCl, and CF<sub>3</sub>OH+HBr reactions, respectively. The presence of HF leads to the greatest reduction in the activation barrier, by over 90 kJ mol<sup>-1</sup>, whereas HCl and HBr lower the height of the energy barrier by a little less than 65 kJ mol<sup>-1</sup>.

| Table 1                          | Molecular pro                     | perties of the                       | structures takin                         | ng part in the r                   | reaction mecha             | nism of the th   | ermal decor    | nposition of tr | ifluoromethan       | ol in the prese  | nce of hydroge    | n halides <sup>a)</sup> |                     |
|----------------------------------|-----------------------------------|--------------------------------------|------------------------------------------|------------------------------------|----------------------------|------------------|----------------|-----------------|---------------------|------------------|-------------------|-------------------------|---------------------|
|                                  | CF <sub>3</sub> OH                | TS1F                                 | $CF_2O$                                  | MC1F-HF                            | TS2F-HF                    | MC2F-HF          |                | MC1F-HCI        | TS2F-HCI            | MC2F-HCI         | MC1F-HBr          | TS2F-HBr                | MC2F-HBr            |
| CO                               | 1.3511                            | 1.2628                               | 1.1871                                   | 1.3362                             | 1.2492                     | 1.1964           | CO             | 1.3436          | 1.2559              | 1.1930           | 1.3437            | 1.2567                  | 1.1930              |
| $OH_0$                           | 0.9741                            | 1.2545                               |                                          | 0.9823                             | 1.2345                     | 1.8283           | $OH_0$         | 0.9774          | 1.1084              | 2.0747           | 1.3517            | 1.8176                  | 2.1137              |
| $CF_1$                           | 1.3520                            | 1.7186                               | 1.3277                                   | 1.3814                             | 1.7286                     | 1.3122           | $CF_1$         | 1.3651          | 1.8115              | 1.3168           | 0.9784            | 1.0968                  | 2.5439              |
| $CF_2$                           | 1.3520                            | 1.3168                               | 1.3277                                   | 1.3490                             | 1.3139                     | 1.3162           | $CF_2$         | 1.3513          | 1.2967              | 1.3201           | 1.3635            | 1.2958                  | 1.3168              |
| $CF_3$                           | 1.3317                            | 1.3168                               |                                          | 1.3293                             | 1.3274                     | 2.5098           | $CF_3$         | 1.3305          | 1.3078              | 2.5498           | 1.3317            | 1.3057                  | 1.3209              |
| $\rm XH_0$                       |                                   |                                      |                                          | 1.8526                             | 1.1428                     | 0.9500           | $\rm XH_0$     | 2.5365          | 1.7328              | 1.2874           | 2.5840            | 1.8996                  | 1.4434              |
| НХ                               |                                   |                                      |                                          | 0.9430                             | 1.1708                     | 1.7026           | НХ             | 1.2821          | 1.7167              | 2.4136           | 1.4375            | 1.8697                  | 2.4744              |
| $COH_0$                          | 108.1404                          | 80.7211                              |                                          | 107.5284                           | 107.7525                   | 116.6439         | $COH_0$        | 108.3524        | 108.7918            | 124.4120         | 108.0407          | 109.1370                | 121.6622            |
| $F_1CO$                          | 112.1963                          | 91.0308                              | 126.2625                                 | 111.7254                           | 105.3463                   | 125.3047         | $F_1CO$        | 112.2032        | 103.9446            | 125.6872         | 112.7477          | 104.1826                | 98.4587             |
| $F_2CO$                          | 112.1963                          | 121.7898                             | 126.2625                                 | 113.4601                           | 119.5416                   | 125.4141         | $F_2CO$        | 112.7292        | 118.7751            | 125.6110         | 112.2218          | 118.5023                | 125.7501            |
| $F_3CO$                          | 108.3109                          | 121.7898                             |                                          | 109.7308                           | 120.5603                   | 94.5331          | $F_3CO$        | 108.9136        | 121.3395            | 97.5638          | 108.8981          | 121.4593                | 125.5398            |
| $O_0HX$                          |                                   |                                      |                                          | 147.3703                           | 153.7427                   | 147.1261         | $O_0HX$        | 149.8158        | 154.8745            | 148.2953         | 154.5783          | 153.4524                | 145.5588            |
| $HXH_0$                          |                                   |                                      |                                          | 93.4586                            | 88.0866                    | 96.1510          | $HXH_0$        | 84.9027         | 70.6419             | 82.7578          | 83.8001           | 67.7053                 | 80.1448             |
| $F_1COH_0$                       | 59.8927                           | 0.0000                               |                                          | -54.1173                           | 33.0892                    | 136.3312         | $F_1COH_0$     | -60.5542        | 50.9202             | 132.8750         | -60.3128          | 55.2916                 | 45.3080             |
| $F_2COH_0$                       | -59.8927                          | 106.4701                             |                                          | 64.6071                            | 143.6113                   | -48.4347         | $F_2COH_0$     | 58.7692         | 158.8719            | -50.8417         | 59.1060           | 162.5715                | 139.5997            |
| $F_3COH_0$                       | 180.0000                          | -106.4701                            |                                          | -173.3824                          | -74.5284                   | 38.4809          | $F_3COH_0$     | 179.7865        | -54.1423            | 38.6004          | 178.8617          | -50.0116                | -44.3252            |
| XH <sub>0</sub> OC               |                                   |                                      |                                          | 29.0462                            | -31.4623                   | -38.7326         | $XH_0OC$       | 32.8060         | -42.5369            | -38.6876         | -20.3991          | -43.3396                | -40.0679            |
| $O_0HXH$                         |                                   |                                      |                                          | 5.0758                             | 6.2710                     | 1.1473           | $\rm XFH_0O$   | -2.1988         | 6.0645              | 3.6758           | -12.2950          | 4.6111                  | 0.4078              |
| $\boldsymbol{v}_1$               | 235                               | 1758 i <sup>b)</sup>                 | 563                                      | 45                                 | 1397 i <sup>b)</sup>       | 7                | $\checkmark^1$ | 23              | 842 i <sup>b)</sup> | 10               | 30                | 652 i <sup>b)</sup>     | 11                  |
| $v_2$                            | 428                               | 260                                  | 610                                      | 95                                 | 115                        | 74               | $v_2$          | 51              | 80                  | 69               | 38                | 71                      | 54                  |
| $v_3$                            | 441                               | 336                                  | 779                                      | 151                                | 179                        | 89               | $v_3$          | 67              | 213                 | 74               | 73                | 175                     | 76                  |
| $v_4$                            | 583                               | 537                                  | 977                                      | 221                                | 232                        | 123              | $\gamma_4$     | 103             | 258                 | 86               | 85                | 239                     | 78                  |
| $v_5$                            | 607                               | 551                                  | 1306                                     | 345                                | 277                        | 169              | $v_5$          | 204             | 326                 | 97               | 220               | 327                     | 103                 |
| $\nu_6$                          | 617                               | 684                                  | 1952                                     | 407                                | 327                        | 204              | $\nu_6$        | 324             | 360                 | 124              | 366               | 351                     | 124                 |
| $v_7$                            | 889                               | 823                                  |                                          | 435                                | 367                        | 341              | $v_7$          | 430             | 550                 | 192              | 431               | 552                     | 161                 |
| $\nu_8$                          | 1123                              | 916                                  |                                          | 528                                | 462                        | 468              | $\nu_8$        | 451             | 566                 | 255              | 469               | 564                     | 242                 |
| $v_9$                            | 1235                              | 981                                  |                                          | 591                                | 503                        | 519              | $v_9$          | 586             | 602                 | 294              | 588               | 600                     | 335                 |
| $v_{10}$                         | 1324                              | 1389                                 |                                          | 610                                | 718                        | 569              | $\nu_{10}$     | 607             | 755                 | 458              | 609               | 750                     | 492                 |
| $v_{11}$                         | 1414                              | 1617                                 |                                          | 617                                | 1024                       | 612              | $v_{11}$       | 617             | 857                 | 568              | 617               | 828                     | 568                 |
| $v_{12}$                         | 3653                              | 1973                                 |                                          | 886                                | 1073                       | 736              | $v_{12}$       | 888             | 966                 | 612              | 888               | 965                     | 612                 |
| $v_{13}$                         |                                   |                                      |                                          | 1140                               | 1243                       | 785              | $v_{13}$       | 1131            | 1090                | 780              | 1139              | 1090                    | 779                 |
| $v_{14}$                         |                                   |                                      |                                          | 1217                               | 1288                       | 966              | $v_{14}$       | 1222            | 1252                | 989              | 1225              | 1248                    | 987                 |
| $v_{15}$                         |                                   |                                      |                                          | 1343                               | 1337                       | 1351             | $v_{15}$       | 1330            | 1503                | 1335             | 1332              | 1500                    | 1332                |
| $v_{16}$                         |                                   |                                      |                                          | 1439                               | 1532                       | 1905             | $v_{16}$       | 1419            | 1594                | 1922             | 1424              | 1586                    | 1925                |
| $v_{17}$                         |                                   |                                      |                                          | 3590                               | 1790                       | 3696             | $v_{17}$       | 2837            | 2017                | 2804             | 2498              | 1975                    | 2485                |
| $v_{18}$                         |                                   |                                      |                                          | 3836                               | 3101                       | 3758             | $v_{18}$       | 3630            | 2790                | 3816             | 3620              | 2761                    | 3797                |
| $E_0(G2)$                        | -413.03877                        | -412.97890                           | -312.69122                               | -513.40782                         | -513.36352                 | -513.40605       | $E_0(G2)$      | -873.39694      | -873.34310          | -873.39291       | -2986.22914       | -2986.17669             | -2986.22442         |
| <sup>a)</sup> G2 mc<br>scaled by | olecular parameter 0.8929 and the | ters: geometrica<br>e total G2-energ | ll structure optir<br>șies are in a.u. 2 | nized at the MP<br>at 0 K (ZPE inc | 22/6-31G(d) levi<br>Juded) | el, (bond lengtt | ıs in Å, valeı | nce and dihedra | l angles in deg     | rees), the SCF/6 | 5-31G(d) vibratio | onal frequencies        | $v_i (cm^{-1})$ are |
| <sup>b)</sup> the un             | scaled MP2/6-3                    | (1G(d) vibration                     | nal frequencies (                        | $(cm^{-1})$                        |                            |                  |                |                 |                     |                  |                   |                         |                     |

| Table 2                              | Molecular proț                    | perties of the st                 | tructures taking                         | part in the rea                   | action mechan            | ism of the the  | rmal decom          | position of tric | hloromethano        | l in the presen | ice of hydrogen | n halides <sup>a)</sup> |                     |
|--------------------------------------|-----------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|--------------------------|-----------------|---------------------|------------------|---------------------|-----------------|-----------------|-------------------------|---------------------|
|                                      | CCl <sub>3</sub> OH               | TS1CI                             | CCl <sub>2</sub> O                       | MC1C1-HF                          | TS2CI-HF                 | MC2CI-HF        |                     | MC1CI-HCI        | TS2CI-HCI           | MC2CI-HCI       | MC1CI-HBr       | TS2Cl-HBr               | MC2CI-HBr           |
| CO                                   | 1.3684                            | 1.2773                            | 1.1949                                   | 1.3516                            | 1.2576                   | 1.2063          | CO                  | 1.3599           | 1.2697              | 1.2019          | 1.3595          | 1.2731                  | 1.2023              |
| $OH_0$                               | 0.9781                            | 1.1215                            |                                          | 0.9864                            | 1.1480                   | 1.8316          | $OH_0$              | 0.9813           | 1.0767              | 2.0622          | 0.9825          | 1.0704                  | 2.1004              |
| CCI1                                 | 1.7916                            | 2.4629                            | 1.7447                                   | 1.8209                            | 2.4895                   | 3.8608          | CC11                | 1.8041           | 2.4677              | 3.6654          | 1.7932          | 2.4135                  | 3.6788              |
| $CCl_2$                              | 1.7916                            | 1.7062                            | 1.7447                                   | 1.7924                            | 1.7008                   | 1.7254          | $CCl_2$             | 1.7923           | 1.6952              | 1.7312          | 1.8039          | 1.6999                  | 1.7310              |
| CCl <sub>3</sub>                     | 1.7586                            | 1.7002                            |                                          | 1.7574                            | 1.7221                   | 1.7273          | CCl <sub>3</sub>    | 1.7591           | 1.7108              | 1.7346          | 1.7594          | 1.7144                  | 1.7354              |
| $\mathrm{XH}_0$                      |                                   |                                   |                                          | 1.8033                            | 1.2320                   | 0.9471          | $\mathrm{XH}_0$     | 2.4539           | 1.7941              | 1.2873          | 2.5402          | 1.9496                  | 1.4433              |
| НХ                                   |                                   |                                   |                                          | 0.9426                            | 1.0869                   | 1.8868          | НХ                  | 1.2822           | 1.5764              | 2.6444          | 1.4377          | 1.7370                  | 2.6582              |
| $COH_0$                              | 108.1514                          | 97.4696                           |                                          | 108.4031                          | 110.8941                 | 120.3710        | $COH_0$             | 108.7689         | 112.1580            | 127.8633        | 108.5364        | 9106.111                | 120.2369            |
| Cl <sub>1</sub> CO                   | 111.0518                          | 82.3137                           | 123.8843                                 | 111.0200                          | 97.2495                  | 125.3047        | Cl <sub>1</sub> CO  | 111.2129         | 98.6362             | 81.3511         | 111.5708        | 100.2562                | 84.0893             |
| $Cl_2CO$                             | 111.0518                          | 120.5714                          | 123.8843                                 | 111.9807                          | 117.9519                 | 122.7581        | $Cl_2CO$            | 111.5624         | 116.4558            | 123.2629        | 111.2190        | 115.8432                | 123.3256            |
| Cl <sub>3</sub> CO                   | 106.4187                          | 119.6577                          |                                          | 107.6396                          | 120.4954                 | 123.4709        | Cl <sub>3</sub> CO  | 106.8780         | 120.5878            | 123.5679        | 106.9229        | 120.1743                | 123.4823            |
| $O_0HX$                              |                                   |                                   |                                          | 159.5461                          | 158.1406                 | 157.8249        | $O_0HX$             | 167.1854         | 157.0780            | 160.7682        | 168.3684        | 155.8212                | 155.4455            |
| $HXH_0$                              |                                   |                                   |                                          | 100.5677                          | 93.7383                  | 98.7658         | $HXH_0$             | 93.8852          | 75.3718             | 82.7341         | 88.3763         | 72.0231                 | 80.7067             |
| Cl <sub>1</sub> COH <sub>0</sub>     | 60.1553                           | 5.1592                            |                                          | -59.8179                          | 50.3953                  | 136.3312        | $Cl_1COH_0$         | -60.8981         | 58.6260             | 59.5224         | -58.7771        | 62.5065                 | 63.2891             |
| $Cl_2COH_0$                          | -60.1553                          | 94.5080                           |                                          | 59.7955                           | 157.7705                 | 167.0485        | $Cl_2COH_0$         | 59.3151          | 164.8041            | 158.3373        | 61.4036         | 169.0922                | -18.2226            |
| $Cl_3COH_0$                          | 180.0000                          | -110.9961                         |                                          | -178.9518                         | -50.7549                 | -13.5368        | $Cl_3COH_0$         | 179.6744         | -44.5096            | -22.3496        | -179.1352       | -42.6695                | 162.4286            |
| $XH_0OC$                             |                                   |                                   |                                          | 30.4944                           | -51.6826                 | -49.0143        | $XH_0OC$            | 50.7926          | -60.8933            | -65.9690        | -11.0272        | -55.4111                | -43.8676            |
| $O_0HXH$                             |                                   |                                   |                                          | 5.3143                            | 7.0703                   | -19.7379        | XCIH <sub>0</sub> O | -18.1145         | 13.5982             | 2.1824          | -19.9102        | 7.0723                  | -21.7508            |
| $v_1$                                | 234                               | 1611 i <sup>b)</sup>              | 295                                      | 45                                | 1397 i <sup>b)</sup>     | 7               | ν1                  | 23               | 842 i <sup>b)</sup> | 10              | 30              | 652 i <sup>b)</sup>     | 11                  |
| $v_2$                                | 245                               | 72                                | 445                                      | 95                                | 115                      | 74              | $v_2$               | 51               | 80                  | 69              | 38              | 71                      | 54                  |
| $v_3$                                | 324                               | 219                               | 565                                      | 151                               | 179                      | 89              | $v_3$               | 67               | 213                 | 74              | 73              | 175                     | 76                  |
| $\gamma_4$                           | 342                               | 282                               | 581                                      | 221                               | 232                      | 123             | $\gamma_4$          | 103              | 258                 | 86              | 85              | 239                     | 78                  |
| $v_5$                                | 393                               | 320                               | 878                                      | 345                               | 277                      | 169             | $v_5$               | 204              | 326                 | 97              | 220             | 327                     | 103                 |
| $\nu_6$                              | 414                               | 424                               | 1856                                     | 407                               | 327                      | 204             | $\nu_6$             | 324              | 360                 | 124             | 366             | 351                     | 124                 |
| $v_7$                                | 526                               | 539                               |                                          | 435                               | 367                      | 341             | $v_7$               | 430              | 550                 | 192             | 431             | 552                     | 161                 |
| $\nu_8$                              | 798                               | 593                               |                                          | 528                               | 462                      | 468             | $\gamma_8$          | 451              | 566                 | 255             | 469             | 564                     | 242                 |
| $v_9$                                | 802                               | 961                               |                                          | 591                               | 503                      | 519             | $v_9$               | 586              | 602                 | 294             | 588             | 600                     | 335                 |
| $v_{10}$                             | 1143                              | 1185                              |                                          | 610                               | 718                      | 569             | $v_{10}$            | 607              | 755                 | 458             | 609             | 750                     | 492                 |
| $v_{11}$                             | 1297                              | 1399                              |                                          | 617                               | 1024                     | 612             | $v_{11}$            | 617              | 857                 | 568             | 617             | 828                     | 568                 |
| $v_{12}$                             | 3619                              | 2612                              |                                          | 886                               | 1073                     | 736             | $v_{12}$            | 888              | 966                 | 612             | 888             | 965                     | 612                 |
| $v_{13}$                             |                                   |                                   |                                          | 1140                              | 1243                     | 785             | $v_{13}$            | 1131             | 1090                | 780             | 1139            | 1090                    | 779                 |
| $v_{14}$                             |                                   |                                   |                                          | 1217                              | 1288                     | 966             | $v_{14}$            | 1222             | 1252                | 989             | 1225            | 1248                    | 987                 |
| $v_{15}$                             |                                   |                                   |                                          | 1343                              | 1337                     | 1351            | $v_{15}$            | 1330             | 1503                | 1335            | 1332            | 1500                    | 1332                |
| $v_{16}$                             |                                   |                                   |                                          | 1439                              | 1532                     | 1905            | $v_{16}$            | 1419             | 1594                | 1922            | 1424            | 1586                    | 1925                |
| $v_{17}$                             |                                   |                                   |                                          | 3590                              | 1790                     | 3696            | $v_{17}$            | 2837             | 2017                | 2804            | 2498            | 1975                    | 2485                |
| $\nu_{18}$                           |                                   |                                   |                                          | 3836                              | 3101                     | 3758            | $v_{18}$            | 3630             | 2790                | 3816            | 3620            | 2761                    | 3797                |
| $E_0(G2)$                            | -1492.98743                       | -1492.93343                       | -1032.66305                              | -513.40782                        | -513.36352               | -513.40605      | $E_0(G2)$           | -873.39694       | -873.34310          | -873.39291      | -2986.22914     | -2986.17669             | -2986.22442         |
| <sup>a)</sup> G2 mol.<br>scaled by ( | ecular paramete<br>).8929 and the | srs: geometrical total G2-energie | structure optimiz<br>ss are in a.u. at ( | zed at the MP2/<br>0 K (ZPE inclu | (6-31G(d) level,<br>ded) | , (bond lengths | in Å, valenc        | e and dihedral   | angles in degre     | es), the SCF/6- | 31G(d) vibratio | nal frequencies         | $v_i (cm^{-1})$ are |
| <sup>b)</sup> the unse               | caled MP2/6-31                    | G(d) vibrationa                   | 1 frequencies (cr                        | $n^{-1}$ )                        |                          |                 |                     |                  |                     |                 |                 |                         |                     |

| Table 3              | Molecular pro       | perties of the       | structures takir   | ng part in the r | eaction mecha        | nism of the th   | ermal decor        | nposition of tr | ibromometha          | nol in the pres- | ence of hydrog   | en halides <sup>a)</sup> |                                |
|----------------------|---------------------|----------------------|--------------------|------------------|----------------------|------------------|--------------------|-----------------|----------------------|------------------|------------------|--------------------------|--------------------------------|
|                      | CBr <sub>3</sub> OH | TS1Br                | $CBr_2O$           | MC1Br-HF         | TS2Br-HF             | MC2Br-HF         |                    | MC1Br-HCl       | TS2Br-HCl            | MC2Br-HCl        | MC1Br-HBr        | TS2Br-HBr                | MC2Br-HBr                      |
| co                   | 1.3624              | 1.2710               | 1.1900             | 1.3429           | 1.2506               | 1.2019           | CO                 | 1.3523          | 1.2618               | 1.1975           | 1.3513           | 1.2643                   | 1.1976                         |
| $OH_0$               | 0.9801              | 1.1504               |                    | 0.9907           | 1.2010               | 1.8881           | $OH_0$             | 0.9843          | 1.1184               | 2.1250           | 0.986            | 1.1076                   | 2.1768                         |
| $CBr_1$              | 1.9775              | 2.5714               | 1.9309             | 2.0194           | 2.5810               | 3.3625           | $CBr_1$            | 2.0028          | 2.5899               | 3.3773           | 1.9758           | 2.5660                   | 3.3976                         |
| $CBr_2$              | 1.9775              | 1.8919               | 1.9309             | 1.9762           | 1.8877               | 1.9041           | $CBr_2$            | 1.9739          | 1.8785               | 1.9136           | 2.0028           | 1.8805                   | 1.9199                         |
| $CBr_3$              | 1.9364              | 1.8831               |                    | 1.9344           | 1.9179               | 1.9123           | $CBr_3$            | 1.9361          | 1.9000               | 1.9197           | 1.9372           | 1.9000                   | 1.9145                         |
| $\mathrm{XH}_0$      |                     |                      |                    | 1.7775           | 1.1735               | 0.9454           | $\mathrm{XH}_0$    | 2.4564          | 1.7020               | 1.2860           | 2.5067           | 1.8625                   | 1.4415                         |
| НХ                   |                     |                      |                    | 0.9467           | 1.1100               | 1.9679           | НХ                 | 1.2858          | 1.6104               | 2.7530           | 1.4411           | 1.7748                   | 2.6901                         |
| $COH_0$              | 107.9101            | 98.3400              |                    | 108.153          | 110.2951             | 113.3531         | $COH_0$            | 109.1116        | 111.8855             | 116.0897         | 108.9416         | 111.5832                 | 115.4825                       |
| $Br_1CO$             | 111.4618            | 83.4133              | 124.1137           | 111.4428         | 99.3654              | 91.1972          | $Br_1CO$           | 111.8952        | 100.2924             | 95.9871          | 112.4793         | 101.1643                 | 97.0362                        |
| $Br_2CO$             | 111.4618            | 120.7480             | 124.1137           | 112.6872         | 118.5678             | 123.4623         | $Br_2CO$           | 112.2543        | 117.1200             | 123.8153         | 111.8995         | 116.6469                 | 123.6585                       |
| $Br_3CO$             | 107.0317            | 120.0365             |                    | 108.4920         | 120.0673             | 123.2083         | $Br_3CO$           | 107.5833        | 120.5385             | 123.5064         | 107.5656         | 120.4932                 | 123.7423                       |
| $O_0HX$              |                     |                      |                    | 156.5017         | 159.4436             | 149.6627         | $O_0HX$            | 158.7438        | 159.8903             | 157.6404         | 161.2245         | 158.8981                 | 148.7305                       |
| $HXH_0$              |                     |                      |                    | 98.2152          | 95.5661              | 158.4755         | $HXH_0$            | 80.5258         | 77.5543              | 85.4690          | 79.1114          | 74.5401                  | 82.8781                        |
| $Br_1COH_0$          | 60.0759             | 5.1414               |                    | -61.5266         | 50.4033              | 58.3930          | $Br_1COH_0$        | -66.0483        | 58.6913              | 60.6353          | -55.4448         | 62.7997                  | 61.9441                        |
| $Br_2COH_0$          | -60.0759            | -95.0590             |                    | 57.4842          | 158.8295             | 153.0263         | $Br_2COH_0$        | 53.9532         | 165.5191             | 152.2627         | 64.6418          | 169.5117                 | -26.1592                       |
| $Br_3COH_0$          | 180.0000            | 110.7385             |                    | 179.5520         | -52.1406             | -27.0436         | $Br_3COH_0$        | 175.0639        | -44.9415             | -28.0199         | -176.4778        | -41.9118                 | 154.1595                       |
| XH <sub>0</sub> OC   |                     |                      |                    | 27.1319          | -50.9266             | -44.6755         | XH <sub>0</sub> OC | 43.3351         | -58.9397             | -53.3750         | -13.0235         | -51.0571                 | -24.5967                       |
| $O_0HXH$             |                     |                      |                    | 10.5863          | 6.6792               | -16.1968         | $XBrH_0O$          | -5.6268         | 11.4645              | -2.4679          | -27.0558         | 1.5180                   | -31.9056                       |
| $\gamma_1$           | 148                 | 1770 i <sup>b)</sup> | 179                | 31               | 1350 i <sup>b)</sup> | 9                | ٧l                 | 17              | 1186 i <sup>b)</sup> | 13               | 28               | 935 i <sup>b)</sup>      | 24                             |
| $v_2$                | 151                 | 45                   | 347                | 06               | 30                   | 18               | $v_2$              | 41              | 53                   | 25               | 39               | 50                       | 27                             |
| $v_3$                | 211                 | 132                  | 410                | 127              | 67                   | 42               | $v_3$              | 63              | 61                   | 30               | 55               | 70                       | 37                             |
| $v_4$                | 264                 | 192                  | 515                | 150              | 88                   | 53               | $\nu_4$            | 142             | 86                   | 40               | 133              | 87                       | 43                             |
| $v_5$                | 308                 | 240                  | 751                | 158              | 148                  | 91               | $v_5$              | 150             | 120                  | 49               | 151              | 114                      | 50                             |
| $\nu_6$              | 368                 | 340                  | 1861               | 209              | 188                  | 121              | $\nu_6$            | 157             | 184                  | 70               | 154              | 170                      | 58                             |
| $v_7$                | 398                 | 430                  |                    | 239              | 278                  | 181              | $\mathbf{v}_7$     | 210             | 192                  | 114              | 209              | 191                      | 179                            |
| $\nu_8$              | 693                 | 529                  |                    | 301              | 353                  | 257              | $\gamma_8$         | 219             | 265                  | 177              | 219              | 218                      | 185                            |
| $v_9$                | 697                 | 825                  |                    | 332              | 431                  | 314              | $v_9$              | 291             | 372                  | 179              | 295              | 366                      | 195                            |
| $v_{10}$             | 1127                | 1165                 |                    | 395              | 461                  | 354              | $v_{10}$           | 314             | 436                  | 207              | 322              | 436                      | 275                            |
| $v_{11}$             | 1285                | 1378                 |                    | 416              | 796                  | 396              | $v_{11}$           | 396             | 453                  | 284              | 397              | 478                      | 325                            |
| $v_{12}$             | 3608                | 2512                 |                    | 578              | 838                  | 425              | $v_{12}$           | 415             | 718                  | 356              | 468              | 652                      | 354                            |
| $v_{13}$             |                     |                      |                    | 673              | 945                  | 504              | $v_{13}$           | 682             | 802                  | 419              | 682              | 780                      | 417                            |
| $v_{14}$             |                     |                      |                    | 711              | 967                  | 539              | $v_{14}$           | 702             | 841                  | 518              | 704              | 835                      | 518                            |
| $v_{15}$             |                     |                      |                    | 1152             | 1321                 | 785              | $v_{15}$           | 1135            | 938                  | 770              | 1137             | 926                      | 767                            |
| $v_{16}$             |                     |                      |                    | 1339             | 1466                 | 1812             | $v_{16}$           | 1291            | 1291                 | 1831             | 1309             | 1294                     | 1835                           |
| $v_{17}$             |                     |                      |                    | 3523             | 1644                 | 2469             | $v_{17}$           | 2826            | 1509                 | 2493             | 2497             | 1487                     | 2479                           |
| $v_{18}$             |                     |                      |                    | 3802             | 2229                 | 3778             | $v_{18}$           | 3582            | 2753                 | 2814             | 3568             | 2822                     | 2492                           |
| $E_0(G2)$            | -7831.48792         | -7831.43747          | -5258.33155        | -7931.84527      | -7931.81532          | -7931.86348      | $E_0(G2)$          | -8291.83436     | -8291.80145          | -8291.85273      | -10404.66560     | -10404.63507             | -10404.68319                   |
| <sup>a)</sup> G2 moi | lecular paramet     | ters: geometrica     | ll structure optin | nized at the MP  | 2/6-31G(d) lev       | el, (bond length | ıs in Å, valeı     | nce and dihedra | ll angles in deg     | rees), the SCF/  | 6-31G(d) vibrati | onal frequencies         | $v_{i}$ (cm <sup>-1</sup> ) ar |
| b) 41-2 minut        | 0.8929 and the      | e total G2-energ     | gies are in a.u. a | at 0 K (ZPE inc  | (papul               |                  |                    |                 |                      |                  |                  |                          |                                |
| the uns              | caled MPZ/0-5       | VIDIATION            | nal frequencies (  | (cm )            |                      |                  |                    |                 |                      |                  |                  |                          |                                |



Fig. 2 Schematic energy profile for the decomposition of  $CF_3OH$  in the absence (left side) and presence (right side) of hydrogen halides, HX. The energies are calculated at the G2 level including zero-point energy corrections

Homogenous decomposition of CCl<sub>3</sub>OH

The optimized structural parameters, vibrational frequencies, and G2-total energies of the molecular structures taking part in the thermal decomposition of CCl<sub>3</sub>OH are given in Table 2. The calculations show that the most stable structure of CCl<sub>3</sub>OH appears to possess a staggered conformation with  $C_s$  molecular symmetry, like CF<sub>3</sub>OH. The only significant difference in the geometrical parameters of CF<sub>3</sub>OH and CCl<sub>3</sub>OH is related to the C-F and C-Cl bond lengths. The other structural parameters, bond lengths, and angular parameters of CF<sub>3</sub>OH and CCl<sub>3</sub>OH are very close to those of the methanol molecule.

The transition state  $CCl_3OH^{\neq}$ , denoted by TS1Cl, describes the unimolecular dissociation of  $CCl_3OH$  according to the reaction  $CCl_3OH \rightarrow CCl_2O+HCl$ . Some structural parameters of TS1Cl differ distinctly from their counterparts in the TS1F structure. TS1Cl has a symmetry of  $C_1$ point group. The C-Cl<sub>1</sub> contact distance of 2.46 Å is 0.74 Å longer than the C-F<sub>1</sub> bond in the CF<sub>3</sub>OH<sup> $\neq$ </sup> structure, whereas the O-H<sub>0</sub> bond length is a little shorter than that in CF<sub>3</sub>OH<sup> $\neq$ </sup>. The valence angles Cl-C-O and C-O-H<sub>0</sub> differ distinctly from the F-C-O and C-O-H<sub>0</sub> angles in the TS1F structure. The relative total energy of CCl<sub>3</sub>OH<sup> $\neq$ </sup> with respect to CCl<sub>3</sub>OH calculated at the G2 level is found to be 142 kJ mol<sup>-1</sup>. This value corresponds to the height of the energy barrier for the unimolecular decomposition of CCl<sub>3</sub>OH at 0 K.

The pre-reaction adducts  $CCl_3OH...HX$ , designated as MC1Cl-HX, are hydrogen-bonding complexes with a thermal stability toward the corresponding reactants of 15-20 kJ mol<sup>-1</sup> at 0 K. This is less than half that of the heat of formation of the corresponding MC1F-HX from the reactants  $CF_3OH+HX$ . The most stable structure is  $CCl_3OH...HF$  (MC1Cl-HF) and the least is  $CCl_3OH...$ 

HBr (MC1Cl-HBr). The geometrical parameters of the MC1Cl-HX adducts are very close to those in the isolated reactants, i.e., of the CCl<sub>3</sub>OH, HF, HCl, and HBr molecules.

The transition states  $(CCl_3OH..HX)^{\neq}$ , denoted by TS2Cl-HX, describe the decomposition of trichloromethanol accelerated by the hydrogen halides HF, HCl, and HBr. The relative G2 energies of TS2Cl-HX toward the respective reactants were calculated as 65, 74, and 65 kJ mol<sup>-1</sup> at 0 K for TS2CI-HF, TS2CI-Cl, and TS2CI-Br, respectively. The geometrical configuration of the  $(CCl_3OH.HX)^{\neq}$  structures are similar to their counterparts  $(CF_3OH..HX)^{\neq}$ , but the lengths of the corresponding bonds differ significantly. Only the lengths of the O-H<sub>0</sub> bond in TS2Cl-HX are slightly shorter than those in the transition states TS2F-HX. The other bond lengths of the TS2Cl-HX structures are larger compared with TS2F-HX. A shift of HX molecules in the direction of the abstracted chlorine atom Cl<sub>1</sub> changes the orientation of the CCl<sub>3</sub>OH skeleton of TS2Cl-HX only slightly compared with the pre-reaction adducts MC1Cl-HX.

The post-reaction adducts  $CCl_2O...HCl...HX$ , denoted by MC2Cl-HX, are the most stable molecular structures in the CCl<sub>3</sub>OH+HF/HCl/HBr reaction systems. The molecular complexes MC2Cl-HX are loose molecular structures with long contact distances between the subunits CCl<sub>2</sub>O, HCl, and HX. The dissociation energy of the MC2Cl-HX complexes to the final reaction products calculated at the G2 level are found to be 34, 28, and 24 kJ mol<sup>-1</sup> at 0 K for MC2Cl-HF, MC2Cl-HCl, and MC2Cl-HBr, respectively.

The profiles of the potential energy surface for the decomposition of  $CCl_3OH$  (+HF/HCl/HBr) calculated at the G2 level are shown in Fig. 3. The thermal decomposition of  $CCl_3OH$  is an exothermic reaction at all the



Fig. 3 Schematic energy profile for the decomposition of CCl<sub>3</sub>OH in the absence (left side) and presence (right side) of hydrogen halides, HX. The energies are calculated at the G2 level including zero-point energy corrections

temperatures considered in this study. The energy barrier for the thermal decomposition of  $CCl_3OH$  (reaction 3) calculated at the G2 level is high, 142 kJ mol<sup>-1</sup>, at 0 K. This is 15 kJ mol<sup>-1</sup> less than the analogous reaction of CF<sub>3</sub>OH. A more complex reaction mechanism is postulated when the decomposition of CCl<sub>3</sub>OH proceeds in the presence of hydrogen halides.

$$CCl_{3}OH + HX \leftrightarrows CCl_{3}OH...HX \leftrightarrows CCl_{2}O...HCl...HX$$
$$\rightarrow CCl_{2}O + HCl + HX$$
(10)

The approach of the HX molecules to CCl<sub>3</sub>OH leads to the formation of the CCl<sub>3</sub>OH...HX (MC1Cl-HX) molecular complexes. However, the binding energies of the formed complexes between the hydrogen halides and trichlorome-thanol MC1Cl-HX are distinctly lower than those in the corresponding MC1F-HX intermediates. The reaction path then leads through the transition state TS2Cl-HX to another molecular complex, MC2Cl-HX, which finally dissociates into reaction products. The threshold energies for these pathways toward the reactants are distinctly lower than that for the unimolecular dissociation of CCl<sub>3</sub>OH. Values of the reduction of the reaction barrier for the decay of CCl<sub>3</sub>OH caused by the presence of HF, HCl, and HBr are found of 77, 68, and 77 kJ mol<sup>-1</sup>, respectively.

#### Homogenous decomposition of CBr<sub>3</sub>OH

The calculated properties of the molecular structures taking part in the reaction mechanism of the decomposition of CBr<sub>3</sub>OH in the presence of HF, HCl, and HBr are gathered in Table 3. A staggered conformation with a symmetry of the C<sub>s</sub> point group was found as the most stable molecular structure of CBr<sub>3</sub>OH, like CF<sub>3</sub>OH and CCl<sub>3</sub>OH. Except for the C-Br bond lengths, the geometrical parameters of CBr<sub>3</sub>OH are close to their counterparts in the CCl<sub>3</sub>OH and CF<sub>3</sub>OH molecules.

The saddle point CBr<sub>3</sub>OH<sup> $\neq$ </sup>, denoted by TS1Br, for the unimolecular decomposition of CBr<sub>3</sub>OH has C<sub>1</sub> symmetry, like the TS1Cl structure. All the bond lengths in CBr<sub>3</sub>OH<sup> $\neq$ </sup> are systematically longer than in CF<sub>3</sub>OH<sup> $\neq$ </sup> and CCl<sub>3</sub>OH<sup> $\neq$ </sup>, whereas the angular parameters are very close to those in CCl<sub>3</sub>OH<sup> $\neq$ </sup>. The energy barrier for the unimolecular dissociation CBr<sub>3</sub>OH $\rightarrow$ CBr<sub>2</sub>O+HBr calculated at the G2 level is 133 kJ mol<sup>-1</sup> at 0 K.

The pre-reaction adducts  $CBr_3OH...HX$ , denoted by MC1Br-HX, are molecular complexes with a symmetry of  $C_s$  point group. The geometrical parameters of the subunits of MC1Br-HX, i.e.,  $CBr_3OH$  and HX, are close to those in the isolated tribromomethanol and hydrogen halides. The formation of MC1Br-HX complexes is a less exothermic process than the formation of the corresponding MC1Cl-

HX. The most stable is CBr<sub>3</sub>OH...HF (MC1Br-HF). However, its dissociation energy toward the reactants CBr<sub>3</sub>OH and HF is found to be 19 kJ mol<sup>-1</sup> at 0 K. The formation of MC1Br-HF is thus a distinctly less exothermic process than the formation of MC1Cl-HF and MC1F-HF.

The transition states  $(CBr_3OH..HX)^{\neq}$ , designated as TS2Br-HX, are critical structures in the kinetic description of the decomposition of tribromomethanol in the presence of hydrogen halides, HX. The structural parameters of the transition states TS2Br-HX show similarity to the corresponding TS2Cl-HX structures. The angular parameters of TS2Br-HX and TS2Cl-HX are very close. However, except for the H<sub>0</sub>-X and C-O bond lengths, the bonds of TS2Br-HX are considerably longer than their counterparts in TS2Cl-HX. The calculated energy barriers are 59, 70, and 68 kJ mol<sup>-1</sup> at 0 K for the CBr<sub>3</sub>OH+HF, CBr<sub>3</sub>OH+HCl, and CBr<sub>3</sub>OH+HBr reactions, respectively.

The post-reaction adducts  $CBr_2O...HBr...HX$ , designated MC2Br-HX, are loose structures with long contact distances between  $CBr_2O$ , HBr, and HX. The molecular complexes MC2Br-HX are the most stable structures in the  $CBr_3OH+HF/HCI/HBr$  reaction systems. The dissociation energy of the post-reaction complexes to the respective final reaction products cover a range of 14 - 23 kJ mol<sup>-1</sup> at 0 K.

The mechanism of the decomposition of CBr<sub>3</sub>OH was analyzed in terms of the profiles of the potential energy surface, which are shown in Fig. 4. The unimolecular decomposition of CBr<sub>3</sub>OH is the most exothermic among the reactions under investigation. The energy barrier for the reaction CBr<sub>3</sub>OH $\rightarrow$ CBr<sub>2</sub>O+HBr is high, i.e., 132 kJ mol<sup>-1</sup>, but lower than those derived for the unimolecular decomposition of CF<sub>3</sub>OH and CCl<sub>3</sub>OH. In the presence of the hydrogen halides HF, HCl, and HBr, the mechanism of



Fig. 4 Schematic energy profile for the decomposition of  $CBr_3OH$  in the absence (left side) and presence (right side) of hydrogen halides, HX. The energies are calculated at the G2 level including zero-point energy corrections

decomposition of CBr<sub>3</sub>OH is complex and consists of three elementary steps.

$$CBr_3OH + HX \leftrightarrows CBr_3OH...HX \leftrightarrows CBr_2O...HBr...HX$$
  
 $\rightarrow CBr_2O + HBr + HX$ 
(11)

Intermediate complexes are formed during the reaction. The thermal stability of the molecular complexes with respect to the reactants (MC1Y-HX) and products (MC2Y-HX) decreases when Y changes in the series from F to Br. The reaction  $CBr_3OH+HF$  is related to the lowest energy barrier, i.e., 59 kJ mol<sup>-1</sup> at 0 K, and is expected to be the fastest process among the reactions analyzed.

# Rate coefficient calculations

The rate coefficients for the thermal decomposition of perhalogenated methanols were analyzed in terms of transition state theory. Let us use a superscript of the rate coefficient to denote the order of the reaction. In this way,  $k^{(1)}$  is the rate coefficient for the first-order decomposition of CY<sub>3</sub>OH and  $k^{(2)}$  is related to the second-order reaction CY<sub>3</sub>OH+HX (the subscript HX with the rate coefficient symbol  $k_{HX}^{(2)}$  is used to distinguish the hydrogen halide reactant). The height of the energy barrier is clearly the major factor determining the magnitude of the rate coefficient and its dependence on temperature. The energy barriers, calculated at the G2 level, for the reactions CY<sub>3</sub>OH $\rightarrow$ COY<sub>2</sub>+HY (where Y = F, Cl, and Br) are high, over 130 kJ mol<sup>-1</sup>.

The calculated rate coefficient k<sup>(1)</sup> for the first-order decomposition of CF<sub>3</sub>OH is very small, with  $3.3 \times 10^{-14}$  s<sup>-1</sup> at room temperature. This corresponds to an atmospheric lifetime  $\tau$  of CF<sub>3</sub>OH with respect to its thermal decomposition of 10<sup>6</sup> years, which is a few orders of magnitude greater than the experimental estimates [1]. The rate coefficients for the unimolecular decomposition of CCl<sub>3</sub>OH and CBr<sub>3</sub>OH are considerably greater than for the decay of CF<sub>3</sub>OH. The calculated  $k^{(1)}$  at room temperature are 3.8×  $10^{-11}$  and  $1.9 \times 10^{-9}$  s<sup>-1</sup> for the unimolecular dissociation of CCl<sub>3</sub>OH and CBr<sub>3</sub>OH, respectively. The rate coefficients  $k^{(1)}$  can be considered as the high-pressure limiting rate coefficients k<sub>diss</sub>, in the theory of unimolecular reactions. In the temperature range of 200-3000 K, the rate coefficient  $k_{\text{diss},\infty}$  for the unimolecular dissociation of the perhalogenated alcohols can be expressed in terms of three-parameter fits of the form  $A \times (T/300)^n \times exp(-E/T)$ , as:

$$k_{diss,\infty}(CF_3OH) = 2.3 \times 10^{13} \times (T/300)^{0.52}$$
  
  $\times \exp(-18550/T) s^{-1}$  (12)

$$k_{diss,\infty}(CCl_3OH) = 9.5 \times 10^{13} \times (T/300)^{0.27}$$
  
  $\times \exp(-16860/T) \qquad s^{-1} \qquad (13)$ 

$$\begin{aligned} k_{diss,\infty}(CBr_3OH) &= 9.2 \times 10^{13} \times (T/300)^{0.20} \\ &\times \ exp \left(-15680/T\right) \qquad s^{-1} \qquad (14) \end{aligned}$$

The above equations reproduce the values of the theoretical rate coefficients given in Table 4, 5 and 6 with precision sufficient for kinetic modeling; the relative errors do not exceed 10%.

The atmospheric lifetimes of  $CCl_3OH$  and  $CBr_3OH$  corresponding to the calculated values of  $k^{(1)}$  are many orders of magnitude greater than the upper limits measured experimentally. This strongly suggests that the decomposition of  $CF_3OH$ ,  $CCl_3OH$ , and  $CBr_3OH$  in the atmosphere must proceed according to a different and considerably more efficient reaction mechanism.

In the presence of hydrogen halides, the mechanism of the decomposition of CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH is more complex due to the formation of the intermediate complexes MC1Y-HX and MC2Y-HX. If the total pressure is sufficiently high to enable efficient collision stabilization of the adducts, the kinetics of the decomposition of CY<sub>3</sub>OH molecules should be considered in detail by advanced kinetic models [38–42]. The general equation, which takes into account rotational energy, can be derived from RRKM theory. According to this formalism, the rate coefficient  $k_{exact}^{(2)}$  for the multistep decomposition of CY<sub>3</sub>OH+HX can be expressed as:

$$k_{exact}^{(2)} = \frac{z}{hQ_{R-OH}Q_{HX}} \int_{V_{TS2Y-HX}}^{\infty} \sum_{J} W_{MC1Y-HX}(E,J) \\ \times \frac{W_{TS2Y-HX}(E,J)}{W_{MC1Y-HX}(E,J) + W_{TS2Y-HX}(E,J)}$$
(15)  
$$\times \frac{W_{MC2Y-HX}(E,J) + W_{TS2Y-HX}(E,J)}{W_{MC2Y-HX}(E,J) + W_{TS2Y-HX}(E,J)} \\ \times \exp(-E/RT)dE$$

where  $Q_{R-OH}$  and  $Q_{HX}$  are the partition functions of the alcohol CY<sub>3</sub>OH and hydrogen halide HX, respectively, with the center of mass partition function factored out of the product  $Q_{R-OH}Q_{HX}$  and included in z together with the partition functions of those inactive degrees of freedom which are not considered by the sums of the states under the integral.  $V_{TS2Y-HX}$  is the threshold energy toward the reactants CY<sub>3</sub>OH+HX and  $W_{TS2Y-HX}(E,J)$ ,  $W_{MC1Y-HX}(E,J)$ , and  $W_{MC2Y-HX}(E,J)$  denote the sum of the states at energy less than or equal to E and with angular momentum J for the transition state TS2Y-HX and the activated complexes

**Table 4** The rate coefficients calculated for the unimolecular ( $k^{(1)}$ ) and the bimolecular HX-accelerated,  $k_{HX}^{(2)}$  decomposition of CF<sub>3</sub>OH

| T<br>(K) | $\kappa_0^{a)}$ | $k^{(1)}$<br>(s <sup>-1</sup> ) | $\kappa_{\rm HF}$ <sup>b)</sup> | $k_{\rm HF}^{(2)}$<br>(cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> ) | $\kappa_{\rm HCl}$ <sup>b)</sup> | $k_{HCl}^{(2)}$<br>(cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> ) | $\kappa_{\rm HBr}$ <sup>b)</sup> | $\begin{matrix} k_{\rm HBr}^{(2)} \\ ({\rm cm}^3 {\rm molecule}^{-1} {\rm s}^{-1}) \end{matrix}$ |
|----------|-----------------|---------------------------------|---------------------------------|---------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------|
| 200      | 7.67            | $9.08 \times 10^{-28}$          | 5.21                            | $1.02 \times 10^{-29}$                                                          | 2.53                             | $1.15 \times 10^{-37}$                                                       | 1.92                             | $1.57 \times 10^{-37}$                                                                           |
| 250      | 5.27            | $1.24 \times 10^{-19}$          | 3.69                            | $2.27 \times 10^{-26}$                                                          | 1.98                             | $7.35 \times 10^{-33}$                                                       | 1.59                             | $9.16 \times 10^{-33}$                                                                           |
| 300      | 3.96            | $3.28 \times 10^{-14}$          | 2.87                            | $3.97 \times 10^{-24}$                                                          | 1.68                             | $1.22 \times 10^{-29}$                                                       | 1.41                             | $1.44 \times 10^{-29}$                                                                           |
| 350      | 3.18            | $2.43 \times 10^{-10}$          | 2.37                            | $1.64 \times 10^{-22}$                                                          | 1.50                             | $2.51 \times 10^{-27}$                                                       | 1.30                             | $2.86 \times 10^{-27}$                                                                           |
| 400      | 2.67            | $1.95 \times 10^{-7}$           | 2.05                            | $2.73 \times 10^{-21}$                                                          | 1.38                             | $1.40 \times 10^{-25}$                                                       | 1.23                             | $1.57 \times 10^{-25}$                                                                           |
| 450      | 2.32            | $3.54 \times 10^{-5}$           | 1.83                            | $2.50 \times 10^{-20}$                                                          | 1.30                             | $3.29 \times 10^{-24}$                                                       | 1.18                             | $3.61 \times 10^{-24}$                                                                           |
| 500      | 2.07            | $2.29 \times 10^{-3}$           | 1.67                            | $1.50 \times 10^{-19}$                                                          | 1.25                             | $4.19 \times 10^{-23}$                                                       | 1.15                             | $4.54 \times 10^{-23}$                                                                           |
| 600      | 1.74            | $1.20 \times 10^{0}$            | 1.47                            | $2.33 \times 10^{-18}$                                                          | 1.17                             | $2.01 \times 10^{-21}$                                                       | 1.10                             | $2.13 \times 10^{-21}$                                                                           |
| 700      | 1.54            | $1.07 \times 10^{2}$            | 1.34                            | $1.75 \times 10^{-17}$                                                          | 1.13                             | $3.36 \times 10^{-20}$                                                       | 1.08                             | $3.50 \times 10^{-20}$                                                                           |
| 800      | 1.42            | $3.12 \times 10^{3}$            | 1.26                            | $8.32 \times 10^{-17}$                                                          | 1.10                             | $2.90 \times 10^{-19}$                                                       | 1.06                             | $2.98 \times 10^{-19}$                                                                           |
| 900      | 1.33            | $4.36 \times 10^{4}$            | 1.21                            | $2.91 \times 10^{-16}$                                                          | 1.08                             | $1.60 \times 10^{-18}$                                                       | 1.05                             | $1.63 \times 10^{-18}$                                                                           |
| 1000     | 1.27            | $3.63 \times 10^{5}$            | 1.17                            | $8.17 \times 10^{-16}$                                                          | 1.06                             | $6.49 \times 10^{-18}$                                                       | 1.04                             | $6.54 \times 10^{-18}$                                                                           |
| 1500     | 1.12            | $2.22 \times 10^{8}$            | 1.08                            | $2.38 \times 10^{-14}$                                                          | 1.03                             | $5.48 \times 10^{-16}$                                                       | 1.02                             | $5.33 \times 10^{-16}$                                                                           |
| 2000     | 1.07            | $5.78 \times 10^{9}$            | 1.04                            | $1.65 \times 10^{-13}$                                                          | 1.02                             | $6.36 \times 10^{-15}$                                                       | 1.01                             | $6.03 \times 10^{-15}$                                                                           |
| 3000     | 1.03            | $1.57 \times 10^{11}$           | 1.02                            | $1.62 \times 10^{-12}$                                                          | 1.01                             | $1.01 \times 10^{-13}$                                                       | 1.00                             | $9.33 \times 10^{-14}$                                                                           |

<sup>a)</sup> Wigner tunneling correction factor  $\kappa_0$  calculated for the imaginary frequency of the transition state TS1F (CF<sub>3</sub>OH<sup>±</sup>)

<sup>b)</sup> Wigner tunneling correction factor  $\kappa_{\rm HX}$  calculated for the imaginary frequency of the respective transition state TS2F-HX (CF<sub>3</sub>OH.HX)<sup>#</sup>

for the unimolecular dissociations of MC1Y-HX and MC2Y-HX, respectively. All computational effort is then related to calculating the sum of the states, W(E,J). This calculation depends on the level at which the conservation of angular momentum is considered and is discussed in detail in Refs. [40, 41].

However, if the adducts are not stabilized and can rapidly undergo subsequent processes, the TST rate coefficient  $k_{TST}$  is a very good approximation of the exact rate coefficient, especially at ambient temperatures [29]. Analysis of the results of the direct calculations of Brudnik et al. [29] shows that the difference between the rate

 $\textbf{Table 5} \hspace{0.1cm} \text{The rate coefficients calculated for the unimolecular, } k^{(1)} \hspace{0.1cm} \text{and the bimolecular HX-accelerated, } k^{(2)}_{HX} \hspace{0.1cm} \text{decomposition of } \text{CCl}_3\text{OH} \hspace{0.1cm} \text{OH} \hspace{0.1cm} \text{Table 5} \hspace{0.1cm} \text{OH} \hspace$ 

| T<br>(K) | $\kappa_0^{a)}$ | $k^{(1)}(s^{-1})$      | $\kappa_{ m HF}$ <sup>b)</sup> | $k_{HF}^{(2)}$<br>(cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> ) | $\kappa_{HCl}$ <sup>b)</sup> | $k_{HCl}^{(2)}$<br>(cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> ) | $\kappa_{\rm HBr}$ <sup>b)</sup> | $k_{HBr}^{(2)}$<br>(cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> ) |
|----------|-----------------|------------------------|--------------------------------|-----------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------|
| 200      | 6.59            | $1.97 \times 10^{-23}$ | 3.95                           | $3.56 \times 10^{-29}$                                                      | 3.87                         | $8.67 \times 10^{-32}$                                                       | 2.95                             | $8.44 \times 10^{-30}$                                                       |
| 250      | 4.58            | $4.63 \times 10^{-16}$ | 2.89                           | $6.52 \times 10^{-26}$                                                      | 2.84                         | $5.65 \times 10^{-28}$                                                       | 2.25                             | $1.87 \times 10^{-26}$                                                       |
| 300      | 3.49            | $3.77 \times 10^{-11}$ | 2.31                           | $9.76 \times 10^{-24}$                                                      | 2.28                         | $2.05 \times 10^{-25}$                                                       | 1.87                             | $3.34 \times 10^{-24}$                                                       |
| 350      | 2.83            | $1.21 \times 10^{-7}$  | 1.96                           | $3.52 \times 10^{-22}$                                                      | 1.94                         | $1.43 \times 10^{-23}$                                                       | 1.64                             | $1.41 \times 10^{-22}$                                                       |
| 400      | 2.40            | $5.13 \times 10^{-5}$  | 1.74                           | $5.25 \times 10^{-21}$                                                      | 1.72                         | $3.56 \times 10^{-22}$                                                       | 1.49                             | $2.43 \times 10^{-21}$                                                       |
| 450      | 2.11            | $5.69 \times 10^{-3}$  | 1.58                           | $4.35 \times 10^{-20}$                                                      | 1.57                         | $4.47 \times 10^{-21}$                                                       | 1.39                             | $2.29 \times 10^{-20}$                                                       |
| 500      | 1.90            | $2.46 \times 10^{-1}$  | 1.47                           | $2.39 \times 10^{-19}$                                                      | 1.46                         | $3.48 \times 10^{-20}$                                                       | 1.31                             | $1.42 \times 10^{-19}$                                                       |
| 600      | 1.62            | $7.05 \times 10^{1}$   | 1.33                           | $3.21 \times 10^{-18}$                                                      | 1.32                         | $8.03 \times 10^{-19}$                                                       | 1.22                             | $2.33 \times 10^{-18}$                                                       |
| 700      | 1.46            | $4.03 \times 10^{3}$   | 1.24                           | $2.14 \times 10^{-17}$                                                      | 1.23                         | $8.08 \times 10^{-18}$                                                       | 1.16                             | $1.84 \times 10^{-17}$                                                       |
| 800      | 1.35            | $8.45 \times 10^{4}$   | 1.19                           | $9.26 \times 10^{-17}$                                                      | 1.18                         | $4.81 \times 10^{-17}$                                                       | 1.12                             | $9.08 \times 10^{-17}$                                                       |
| 900      | 1.28            | $9.05 \times 10^{5}$   | 1.15                           | $2.99 \times 10^{-16}$                                                      | 1.14                         | $2.01 \times 10^{-16}$                                                       | 1.10                             | $3.28 \times 10^{-16}$                                                       |
| 1000     | 1.22            | $6.06 \times 10^{6}$   | 1.12                           | $7.87 \times 10^{-16}$                                                      | 1.12                         | $6.53 \times 10^{-16}$                                                       | 1.08                             | $9.47 \times 10^{-16}$                                                       |
| 1500     | 1.10            | $1.89 \times 10^{9}$   | 1.05                           | $1.85 \times 10^{-14}$                                                      | 1.05                         | $2.94 \times 10^{-14}$                                                       | 1.04                             | $2.97 \times 10^{-14}$                                                       |
| 2000     | 1.06            | $3.44 \times 10^{10}$  | 1.03                           | $1.15 \times 10^{-13}$                                                      | 1.03                         | $2.55 \times 10^{-13}$                                                       | 1.02                             | $2.12 \times 10^{-13}$                                                       |
| 3000     | 1.03            | $6.43 \times 10^{11}$  | 1.01                           | $1.01 \times 10^{-12}$                                                      | 1.01                         | $3.08 \times 10^{-12}$                                                       | 1.01                             | $2.10 \times 10^{-12}$                                                       |

<sup>a)</sup> Wigner tunneling correction factor  $\kappa_0$  calculated for the imaginary frequency of the transition state TS1Cl (CCl<sub>3</sub>OH<sup> $\pm$ </sup>)

<sup>b)</sup> Wigner tunneling correction factor  $\kappa_{HX}$  calculated for the imaginary frequency of the respective transition state TS2CI-HX (CCl<sub>3</sub>OH.HX)<sup> $\neq$ </sup>

|          |                 |                                 |                                 |                                                                                 |                                  | 1174                                                                         | -                                |                                                                              |
|----------|-----------------|---------------------------------|---------------------------------|---------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------|
| Т<br>(К) | $\kappa_0^{a)}$ | $k^{(1)}$<br>(s <sup>-1</sup> ) | $\kappa_{\rm HF}$ <sup>b)</sup> | $k_{\rm HF}^{(2)}$<br>(cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> ) | $\kappa_{\rm HCl}$ <sup>b)</sup> | $k_{HCl}^{(2)}$<br>(cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> ) | $\kappa_{\rm HBr}$ <sup>b)</sup> | $k_{HBr}^{(2)}$<br>(cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> ) |
| 200      | 7.75            | $7.18 \times 10^{-21}$          | 4.93                            | $1.79 \times 10^{-27}$                                                          | 4.03                             | $7.64 \times 10^{-31}$                                                       | 2.89                             | $6.26 \times 10^{-31}$                                                       |
| 250      | 5.32            | $5.25 \times 10^{-14}$          | 3.52                            | $1.67 \times 10^{-24}$                                                          | 2.94                             | $2.97 \times 10^{-27}$                                                       | 2.21                             | $2.17 \times 10^{-27}$                                                       |
| 300      | 4.00            | $1.93 \times 10^{-9}$           | 2.75                            | $1.58 \times 10^{-22}$                                                          | 2.35                             | $7.58 \times 10^{-25}$                                                       | 1.84                             | $5.20 \times 10^{-25}$                                                       |
| 350      | 3.21            | $3.49 \times 10^{-6}$           | 2.28                            | $4.08 \times 10^{-21}$                                                          | 1.99                             | $4.11 \times 10^{-23}$                                                       | 1.62                             | $2.72 \times 10^{-23}$                                                       |
| 400      | 2.69            | $9.62 \times 10^{-4}$           | 1.98                            | $4.73 \times 10^{-20}$                                                          | 1.76                             | $8.47 \times 10^{-22}$                                                       | 1.47                             | $5.49 \times 10^{-22}$                                                       |
| 450      | 2.33            | $7.58 \times 10^{-2}$           | 1.78                            | $3.22 \times 10^{-19}$                                                          | 1.60                             | $9.18 \times 10^{-21}$                                                       | 1.37                             | $5.87 \times 10^{-21}$                                                       |
| 500      | 2.08            | $2.49 \times 10^{0}$            | 1.63                            | $1.52 \times 10^{-18}$                                                          | 1.49                             | $6.34 \times 10^{-20}$                                                       | 1.30                             | $4.02 \times 10^{-20}$                                                       |
| 600      | 1.75            | $4.70 \times 10^{2}$            | 1.44                            | $1.61 \times 10^{-17}$                                                          | 1.34                             | $1.23 \times 10^{-18}$                                                       | 1.21                             | $7.67 \times 10^{-19}$                                                       |
| 700      | 1.55            | $1.99 \times 10^{4}$            | 1.32                            | $9.18 \times 10^{-17}$                                                          | 1.25                             | $1.09 \times 10^{-17}$                                                       | 1.15                             | $6.74 \times 10^{-18}$                                                       |
| 800      | 1.42            | $3.33 \times 10^{5}$            | 1.25                            | $3.53 \times 10^{-16}$                                                          | 1.19                             | $5.88 \times 10^{-17}$                                                       | 1.12                             | $3.62 \times 10^{-17}$                                                       |
| 900      | 1.33            | $3.00 \times 10^{6}$            | 1.19                            | $1.05 \times 10^{-15}$                                                          | 1.15                             | $2.28 \times 10^{-16}$                                                       | 1.09                             | $1.40 \times 10^{-16}$                                                       |
| 1000     | 1.27            | $1.74 \times 10^{7}$            | 1.16                            | $2.58 \times 10^{-15}$                                                          | 1.12                             | $7.00 \times 10^{-16}$                                                       | 1.08                             | $4.25 \times 10^{-16}$                                                       |
| 1500     | 1.12            | $3.58 \times 10^{9}$            | 1.07                            | $5.09 \times 10^{-14}$                                                          | 1.05                             | $2.65 \times 10^{-14}$                                                       | 1.03                             | $1.56 \times 10^{-14}$                                                       |
| 2000     | 1.07            | $5.30 \times 10^{10}$           | 1.04                            | $2.95 \times 10^{-13}$                                                          | 1.03                             | $2.11 \times 10^{-13}$                                                       | 1.02                             | $1.21 \times 10^{-13}$                                                       |
| 3000     | 1.03            | $8.09 \times 10^{11}$           | 1.02                            | $2.43 \times 10^{-12}$                                                          | 1.01                             | $2.34 \times 10^{-12}$                                                       | 1.01                             | $1.30 \times 10^{-12}$                                                       |

 $\textbf{Table 6} \ \ \text{The rate coefficients calculated for the unimolecular, } k^{(1)} \ \text{and the bimolecular HX-accelerated, } k^{(2)}_{HX} \ \ \text{decomposition of } CBr_3OH$ 

<sup>a)</sup> Wigner tunneling correction factor  $\kappa_0$  calculated for the imaginary frequency of the transition state TS1Br (CBr<sub>3</sub>OH<sup>±</sup>)

<sup>b)</sup> Wigner tunneling correction factor  $\kappa_{HX}$  calculated for the imaginary frequency of the respective transition state TS2Br-HX (CBr<sub>3</sub>OH..HX)<sup> $\neq$ </sup>

coefficients  $k^{(2)}$  obtained from conventional transition state theory and  $k_{exact}^{(2)}$  from Eq. (11) for CF<sub>3</sub>OH+H<sub>2</sub>O and CCl<sub>3</sub>OH+H<sub>2</sub>O reactions are, at temperatures below 1000 K, practically negligible, and even at 3000 K only slightly exceed 1% and 5% for CF<sub>3</sub>OH and CCl<sub>3</sub>OH, respectively. Therefore the conventional transition state theory is a useful tool in describing reaction kinetics, especially if one considers the precision of kinetic measurements.

Tables 4, 5, 6 also present the calculated values of the bimolecular rate coefficients, denoted by  $k_{HX}^{(2)}$ , for the CY<sub>3</sub>OH+HX (X = F, Cl, and Br) reaction systems. The values of the second-order rate coefficients  $k_{HX}^{(2)}$  are ordered similarly to the rate coefficients  $k^{(1)}$  for the unimolecular dissociation of the perhalogenated alcohols. For the selected HX molecule, the fastest are reactions of CBr<sub>3</sub>OH and the slowest those of CF<sub>3</sub>OH. Analysis of the calculated rate coefficients indicates HF as the most effective accelerator. The presence of HF causes a decrease in the activation energy for the decomposition of CF<sub>3</sub>OH by over 90 kJ mol<sup>-1</sup>. For CCl<sub>3</sub>OH and CBr<sub>3</sub>OH, this reduction is lower, being 77 and 73 kJ mol<sup>-1</sup>, respectively. The catalytic influence of HCl and HBr is distinctly weaker. However, both HCl and HBr result in lowering the energy barrier for the decomposition of CF<sub>3</sub>OH, and CBr<sub>3</sub>OH by of 53-69 kJ mol<sup>-1</sup>.

The lowest energy barrier in the CY<sub>3</sub>OH+HX reaction systems of 59 kJ mol<sup>-1</sup> occurs in the reaction of tribromomethanol with hydrogen fluoride. This results in the highest values of the rate coefficient for the reaction system CBr<sub>3</sub>OH+HF, with  $k^{(2)}$  of  $1.6 \times 10^{-22}$  cm<sup>3</sup>mole-

cule<sup>-1</sup>s<sup>-1</sup> at 300 K. The highest value of the energy barrier of 94 kJ mol<sup>-1</sup> is related with CF<sub>3</sub>OH+HCl. This implies the considerably lower value of the second-order rate coefficient of  $1.2 \times 10^{-29}$  cm<sup>3</sup>molecule<sup>-1</sup>s<sup>-1</sup> at 300 K.

The differences in the heights of the energy barriers are reflected in the magnitudes of the calculated rate coefficients. For the bimolecular decomposition of CF<sub>3</sub>OH, the largest one, i.e.,  $4.0 \times 10^{-24}$  cm<sup>3</sup>molecule<sup>-1</sup>s<sup>-1</sup> at 300 K, is the rate coefficient k<sup>(2)</sup> for the CF<sub>3</sub>OH+HF reaction system due to its having the lowest activation barrier. The energy barriers for the decomposition of CF<sub>3</sub>OH in the presence of HCl and HBr are higher by over 25 kJ mol<sup>-1</sup> compared with HF. Consequently, the rate coefficients k<sup>(2)</sup><sub>HCl</sub> and k<sup>(2)</sup><sub>HBr</sub> are a few orders of magnitude lower and close to one another, being  $1.2 \times 10^{-29}$  and  $1.4 \times 10^{-29}$  cm<sup>3</sup>molecule<sup>-1</sup>s<sup>-1</sup> at 300 K for the CF<sub>3</sub>OH+HCl and CF<sub>3</sub>OH+HBr reactions, respectively.

The rate coefficients for the bimolecular decay of CCl<sub>3</sub>OH depend only slightly on the kind of hydrogen halide. The values of  $k^{(2)}$  calculated at 300 K are 9.8×  $10^{-24}$ ,  $2.0 \times 10^{-25}$ , and  $1.1 \times 10^{-25}$  cm<sup>3</sup>molecule<sup>-1</sup>s<sup>-1</sup> for CCl<sub>3</sub>OH+HF, CCl<sub>3</sub>OH+HCl, and CCl<sub>3</sub>OH+HBr, respectively. The influence of the HX molecule on the decomposition of CBr<sub>3</sub>OH distinctly depends on the type of hydrogen halide. The rate coefficient  $k^{(2)}$  for CBr<sub>3</sub>OH+HF is  $1.6 \times 10^{-22}$  cm<sup>3</sup>molecule<sup>-1</sup>s<sup>-1</sup> at 300 K. This is almost three orders of magnitude greater than the rate coefficients of  $7.7 \times 10^{-25}$  and  $5.2 \times 10^{-25}$  cm<sup>3</sup>molecule<sup>-1</sup>s<sup>-1</sup> for the CBr<sub>3</sub>OH+HCl and CBr<sub>3</sub>OH+HBr reactions, respectively. The temperature dependence of the rate coefficients for the

HX-catalyzed bimolecular decomposition of trifluoromethanol can be expressed in the form:

$$k^{(2)}(CF_{3}OH + HF) = 4.6 \times 10^{-14} \times (T/300)^{2.50} \times exp(-6970/T) \text{ cm}^{3}\text{molecule}^{-1}\text{s}^{-1}$$
(16)

$$\begin{aligned} k^{(2)} \left( CF_3 OH + HCl \right) &= 1.4 \times 10^{-14} \times (T/300)^{2.34} \\ &\times \exp\left(-10410/T\right) \ \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1} \end{aligned} \tag{17}$$

$$k^{(2)} (CF_3OH + HBr) = 1.3 \times 10^{-14} \times (T/300)^{2.30} \\ \times exp(-10340/T) \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}$$
(18)

Similar expressions also describe the bimolecular decomposition of trichloromethanol

$$k^{(2)} (\text{CCl}_3\text{OH} + \text{HF}) = 6.3 \times 10^{-14} \times (\text{T}/300)^{2.13} \\ \times \exp(-6800/\text{T}) \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}$$
(19)

$$k^{(2)} (\text{CCl}_3\text{OH} + \text{HCl}) = 8.1 \times 10^{-14} \times (\text{T}/300)^{2.72} \\ \times \exp(-8025/\text{T}) \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}$$
(20)

$$\begin{split} k^{(2)} \left( \text{CCl}_3\text{OH} + \text{HBr} \right) &= 4.2 \times 10^{-14} \times (\text{T}/300)^{2.69} \\ &\times \exp\left(-6990/\text{T}\right) \ \text{cm}^3\text{molecule}^{-1}\text{s}^{-1} \end{split}$$

and tribromomethanol

$$\begin{split} k^{(2)} \left( \text{CBr}_3\text{OH} + \text{HF} \right) &= 8.2 \ \times \ 10^{-14} \times \ (\text{T}/300)^{2.28} \\ &\times \ \text{exp}(-6045/\text{T}) \ \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1} \end{split} \label{eq:k2}$$

$$\begin{aligned} k^{(2)} \left( \text{CBr}_{3}\text{OH} + \text{HCl} \right) &= 5.0 \times 10^{-14} \times (\text{T}/300)^{2.74} \\ &\times \exp\left(-7490/\text{T}\right) \ \text{cm}^{3}\text{molecule}^{-1}\text{s}^{-1} \end{aligned} \tag{23}$$

$$\begin{aligned} \kappa^{(2)}(\text{CBr}_{3}\text{OH} + \text{HBr}) &= 2.8 \times 10^{-14} \times (\text{T}/300)^{2.72} \\ &\times \exp{(-7430/\text{T})} \ \text{cm}^{3}\text{molecule}^{-1}\text{s}^{-1} \end{aligned}$$
(24)

The reaction rate at a given temperature is determined by either the magnitude of the rate coefficient or the concentrations of the reactants. The values of the activation barrier for the decomposition of CY<sub>3</sub>OH in the presence of hydrogen halides are similar to that caused by the presence of water [29]. However, the concentration of water vapor in the atmosphere  $(10^{17} \text{ molecules cm}^{-3} \text{ at altitudes below 5 km} [1])$  is incomparably greater than that of hydrogen halides. The presence of hydrogen halides may efficiently accelerate the decomposition of CY<sub>3</sub>OH alcohol only when the concentration of HX is sufficiently high to satisfy the inequality  $k_{HX}^{(2)}[HX] >> k^{(1)}$ .Decay of the alcohol molecule CY<sub>3</sub>OH leads to the formation of the respective hydrogen halide HY molecule. The decomposition of CY<sub>3</sub>OH is always catalyzed by HY molecules, which are continuously formed in the reaction. However, depending on the concentration of HY, this autocatalytic effect can be positive or negative.

For an HF concentration lower than 10<sup>10</sup> molecules cm<sup>-3</sup> at room temperature, the rate of the bimolecular reaction CF<sub>3</sub>OH+HF is less than that of the first-order decomposition of CF<sub>3</sub>OH, and HF molecules may only inhibit the reaction rate as a result of binding reactants in the CF<sub>3</sub>OH...HF molecular complex. The other hydrogen halides, HCl and HBr, can stimulate the decomposition of CF<sub>3</sub>OH when they are present in the reaction area at sufficiently high concentrations. Genuine acceleration of the reaction rate requires a concentration of HCl and HBr higher than  $3 \times 10^{15}$  molecules cm<sup>-3</sup> at 300 K. The levels of HCl in ambient air are not well established, but are probably in the low-ppb range  $(10^{10}-10^{11} \text{ molecules cm}^{-3})$ [1]. The atmospheric concentration of HBr is even smaller, on average a few ppt. This is clearly insufficient for promoting the removal of atmospheric CF<sub>3</sub>OH, similarly as CCl<sub>3</sub>OH and CBr<sub>3</sub>OH.

### Summary

The main aim of the present study is related to a theoretical analysis of the kinetics of the gas-phase decomposition of the perhalogenated methanols  $CF_3OH$ ,  $CCl_3OH$ , and  $CBr_3OH$ . Theoretical investigations based on *ab initio* calculations of the reaction systems at the G2 level were performed to gain insight into the reaction mechanism. The results of the calculations also allow an estimation of the reaction energetics and the molecular properties of the structures taking part in the reaction.

The results of theoretical investigations show that the unimolecular dissociation of CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH proceeds with a high energy barrier. This implies low values of the rate coefficients for the reactions under investigations. Values of the high-pressure limiting rate coefficients  $k_{diss,\infty}$  and their dependence on temperature for the thermal dissociation of CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH were derived using the conventional transition state theory in the temperature range 200-3000 K.

The kinetics and mechanism of the decomposition of the investigated alcohols in the presence of the hydrogen halides HF, HCl, and HBr were also analyzed theoretically. The calculated profiles of the potential energy surface of the reaction systems show that considerably lower energy pathways are accessible for the decomposition of CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH in presence of hydrogen halides. The mechanism of the reactions appears to be complex and consists of three consecutive elementary processes with the formation of pre- and post-reaction adducts. The thermal stability of these molecular complexes is determined by the strength of the respective hydrogen bonds formed during reactions. In consequence, the binding energy of the formed adducts increases in agreement with the strength of the formed H...X bonds, H...Br < H...Cl < H...F.

The presence of hydrogen halides distinctly decreases the energy barrier for the bimolecular decomposition of the alcohols CF<sub>3</sub>OH, CCl<sub>3</sub>OH, and CBr<sub>3</sub>OH. Therefore the HX-accelerated bimolecular decomposition of the halogenated alcohols may proceed very rapidly if the concentration of the hydrogen halide in the reaction system is sufficiently high. However, the atmospheric concentrations of the hydrogen halides are small. Consequently, the reactions CF<sub>3</sub>OH/CCl<sub>3</sub>OH/CBr<sub>3</sub>OH+HX are of no importance under typical atmospheric conditions.

The investigated reactions  $CF_3OH/CCl_3OH/CBr_3OH+$ HX may, however, acquire significance in the kinetic modeling of the complex reaction systems studied on a laboratory scale, especially in the case of reactions which proceed with the formation of the perhalogenated alcohols  $CF_3OH$ ,  $CCl_3OH$ , and  $CBr_3OH$  in the presence of sizable concentrations of the halogen halides. Under these conditions, the rate of decay of the perhalogenated methanols may strongly depend on the concentrations of hydrogen halides. The values of the rate coefficients calculated in this study allow a description of the kinetics of the reactions under investigation in a wide temperature range. They should be useful in the kinetic analysis and modeling of such reaction systems.

Acknowledgments This research was supported by Wroclaw Medical University under grant no. ST-263. The Wroclaw Center of Networking and Supercomputing is acknowledged for the generous allotment of computer time.

### References

- 1. Finnlayson-Pitts BJ, Pitts JN (2000) Chemistry of the Upper and Lower Atmosphere. Academic, San Diego
- Wayne RP, Poulet G, Biggs P, Burrows JP, Cox RA, Crutzen PJ, Hayman GD, Jenkin ME, LeBras G, Moortgat GK, Platt U, Schindler RN (1995) Atmos Environ 29:2677–2881
- 3. Wallington TJ, Dagaut P, Kurylo MJ (1992) Chem Rev 92:667-710
- 4. Sehested J, Wallington TJ (1993) Environ Sci Technol 27:146-152
- Wallington TJ, Schneider WF (1994) Environ Sci Technol 28:1198–1200
- Schneider WF, Wallington TJ, Minschwaner K, Stahlberg EA (1995) Environ Sci Technol 29:247–250
- Huey LG, Hanson DR, Lovejoy ER (1995) J Geophys Res 100:18771–18774
- Bednarek G, Kohlmann JP, Saathoff H (1995) Zellner R. Z Phys Chem Munich 188:1–15
- Lovejoy ER, Huey LG, Hanson DR (1995) J Geophys Res 100:18775–18780
- Wallington TJ, Hurley MD, Schneider WF, Sehested J, Nielsen OJ (1993) J Phys Chem 97:7606–7611
- 11. Francisco JS (1991) Chem Phys 150:19-27
- 12. Bock CW, Trachtman M, Niki H, Mains GJ (1994) J Phys Chem 98:7976–7980
- 13. Francisco JS (1994) Chem Phys Lett 218:401-405
- Schneider WF, Wallington TJ, Huie RE (1996) J Phys Chem 100:6097–6103
- 15. Kim SJ, Song HS (1999) Bull Korean Chem Soc 20:1493-1500
- Brudnik K, Jodkowski JT, Ratajczak E, Venkatraman R, Nowek A, Sullivan RH (2001) Chem Phys Lett 345:435–444
- 17. Brudnik K, Jodkowski JT, Ratajczak E (2003) J Mol Struct 656:333-339
- Brudnik K, Jodkowski JT, Ratajczak E (2003) Bull Pol Acad Sci Chem 51:77–91
- Fernández LE, Varetti EL (2003) J Mol Struct THEOCHEM 629:175–183
- Tyndall GS, Wallington TJ, Hurley MD, Schneider WF (1993) J Phys Chem 97:1576–1582
- Wallington TJ, Schneider WF, Barnes I, Becker KH, Sehested J, Nielsen OJ (2000) Chem Phys Lett 322:97–102
- 22. Schnell M, Mühlhäuser M, Peyerimhoff SD (2002) Chem Phys Lett 361:1-7
- 23. Sun H, Bozzelli JW (2001) J Phys Chem A 105:4504-4516
- Brudnik K, Jodkowski JT, Nowek A, Leszczynski J (2007) Chem Phys Lett 435:194–200
- Montgomery JA, Michels HH, Francisco JS (1994) Chem Phys Lett 220:391–396
- Notario R, Castaño O, Abboud JLM (1996) Chem Phys Lett 263:367–370
- 27. Espinosa-Garcia J (1999) Chem Phys Lett 315:239-247
- 28. Segovia M, Ventura ON (1997) Chem Phys Lett 277:490-496
- Brudnik K, Wójcik-Pastuszka D, Jodkowski JT, Leszczynski J (2008) J Mol Model 14:1159–1172
- Vöhringer-Martinez E, Hansmann B, Hernandez H, Francisco JS, Troe J, Abel B (2007) Science 315:497–501
- 31. Garrett BC (2004) Science 303:1146-1147
- Takahashi K, Kramer ZC, Vaida V, Skodje RT (2007) Phys Chem Chem Phys 9:3864–3871
- Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230
- 34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y,

Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian Inc, Pittsburgh PA

35. Johnston HS (1966) Gas-Phase Reaction Rate Theory. Ronald, New York

- 36. Laidler KJ (1969) Theories of Chemical Reaction Rates. McGraw-Hill, New York
- Burk P, Koppel IA, Rummel A, Trumlar A (2000) J Phys Chem A 104:1602–1607
- 38. Mozurkevich M, Benson SW (1984) J Phys Chem 88:6429-6435
- 39. Chen Y, Rauk A, Tschuikow-Roux E (1991) J Phys Chem 95:9900-9908
- Jodkowski JT, Rayez MT, Rayez JC, Bérces T, Dóbé S (1998) J Phys Chem A 102:9219–9229
- Jodkowski JT, Rayez MT, Rayez JC, Bérces T, Dóbé S (1998) J Phys Chem A 102:9230–9243
- Jodkowski JT, Rayez MT, Rayez JC, Bérces T, Dóbé S (1999) J Phys Chem A 103:3750–3765