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Abstract Ab initio calculations at the G2 level were used
in a theoretical analysis of the kinetics of the decomposition
of trifluoro-, trichloro-, and tribromomethanols. The high-
pressure limiting rate coefficients Kgiss o for the thermal
dissociation of CF;OH, CCI;0H, and CBr;OH were
calculated using the conventional transition state theory.
The results of potential surface calculations show that in the
presence of the hydrogen halides HX (X = F, Cl, and Br),
considerably lower energy pathways are accessible for the
decomposition of CF;0H, CCl;0H, and CBr;OH. The
mechanism of the reactions appears to be complex and
consists of three consecutive elementary processes with the
formation of pre- and post-reaction adducts. The presence
of hydrogen halides considerably decreases the energy
barrier for the bimolecular decomposition of the alcohols
CF;0H, CCI30H, and CBr;OH. Results of this study
indicate that hydrogen halides can considerably accelerate
the homogeneous decomposition of perhalogenated meth-
anols when they are present in the reaction area at
sufficiently high concentrations. However, the atmospheric
concentrations of hydrogen halides are too small for
efficient removal of atmospheric CF;OH, CCl;0H, and
CBI'3OH.
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Introduction

The perhalogenated alcohols trifluoro-, trichloro-, and
tribromomethanol occur in the atmosphere as products of
the photofragmentation of alternative halocarbons [1, 2].
They take part in many degradation processes in the
atmosphere and in various combustion systems [2]. In the
oxygen-rich atmosphere, the primary atmospheric fate of
alkyl radicals is the addition reaction with molecular
oxygen. The halogenated methyl radicals CF;, CCl;, and
CBr; are converted into the corresponding methylperoxy
structures CY;0, (Y =F, Cl, and Br), which then react with
nitric oxide, generating trifluoro-, trichloro-, and tribromo-
methoxy CY;0 radicals [1, 3]. The subsequent fate of the
CY;50 radicals is considerably less known. However,
results of kinetic studies suggest that the loss of CY;0
radicals in the lower atmosphere is mainly related to
reactions with nitrogen oxides. Alternative pathways, i.e.,
reactions between CY;0, H,0, and hydrogen halides (HX)
or hydrocarbons (RH), lead to the formation of the
respective perhalogenated alcohols:

CY;0 + (H,0,HX,RH) — CY3;0H + (OH,X,R) (1)

where X, Y = F, Cl, and Br. The formed CY;OH alcohols
may act as temporary halogen reservoir species. The
subsequent reactions of CY3;0OH molecule leading to its
removal from the atmosphere are thus important for a better
understanding of the possible processes of CY3;O loss.
Therefore the kinetics and mechanism of the decomposition
of the perhalogenated alcohols have become the subject of
several experimental and theoretical investigations [4—29].

Trifluoromethanol CF3;OH has been the most frequently
studied. Results of theoretical studies [11-29] show that the
CF;0-H bond is unusually strong, which can be attributed
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to the negative hyperconjugative effect of the CF;3 group.
This implies high activation energy values for hydrogen
abstraction from CF;OH, which has been confirmed by
experimental investigations [4—7]. The photolysis of
CF;0H has also been shown to be inefficient [5, 6]. The
thermal decomposition of trifluoromethanol with the elim-
ination of hydrogen fluoride

CFs0H — COF, + HF (2)

was studied theoretically[11, 13—15, 29] and experimentally
[4-8]. The energy barrier calculated at various levels of
theory is high (150-170 kJ mol '), which results in a very
small reaction rate at ambient temperature. However, there
is some experimental evidence strongly suggesting that
atmospheric CF;0H can be efficiently decomposed hetero-
geneously on H,O surfaces [10]. Theoretical investigations
show that water can introduce many unusual features into
the kinetics and energetics of some chemical reaction
systems [10, 30-32]. Ab initio calculations indicate unam-
biguously that the decomposition of CF;OH on water
aerosols seems to be a major process in the loss of
atmospheric CF;0H [10, 14, 15].

The kinetics of the thermal decomposition of trichlor-
omethanol CCI30H to phosgene COCl, and hydrogen
chloride HCI:

CCl,0H — COCl, + HCI (3)

was investigated experimentally and theoretically [20—-24,
29]. Several smog-chamber experiments show the kinetic
behavior of CCI30H to be very similar to that of CF;0H.
The measured rate of CCl30H decay strongly depends on
the geometry and surface of the reactor walls, which
implies a heterogeneous mechanism of CCl30H decompo-
sition. A value of 1.05x1072 s~ was estimated [22] as the
upper limit of the overall rate coefficient k; at room
temperature. This is in serious disagreement with the results
of theoretical investigations [21]. The height of the energy
barrier for the thermal dissociation of CCl3;0H calculated at
different levels of theory is high, over 125 kJ mol™', and
corresponds to a value of the first-order rate coefficient for
CCI30H decomposition which is 8 orders of magnitude
lower than that estimated experimentally.

There is no experimental information on the kinetics of
the unimolecular decomposition of CBr;OH:

CBr;OH — COBr, + HBr. (4)

However, the structural similarity of CBr;OH to CCl;0H
and CF3;0H suggests that the mechanism of CBr;OH
decomposition is likely analogous to reactions (2) and (3).

Experimental investigations showed that the introduction
of water vapor into the reaction chamber leads to
acceleration of the decomposition of CF;0H [10]. The
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incorporation of CF;OH into water droplets or its decom-
position on aerosols is thought to dominate the loss
processes of atmospheric CF;0H. The results of ab initio
calculations show the existence of a lower energy pathway
on the potential energy surface available in the reaction
systems CF;0H+H,0, CCl30H+H,0, and CBr;OH+H,0
[14, 29]. An analysis of the calculated potential energy
surface for the CY;OH+H,O (Y = F, CI and Br) reaction
systems allows an explanation of the role of water in the
decomposition of CY;OH molecules [29]. A water mole-
cule approaching a CY30H molecule is oriented in such a
manner that enables the formation of a six-atom ring
structure which supports the transport and exchange of
hydrogen atoms inside the ring.

It would seem that hydrogen halides may play a similar
role in the catalytic decomposition of CY3;OH. Therefore
we performed ab initio calculations of the potential energy
surface of the CY;OH+HX (where X, Y = F, Cl, and Br)
reaction system

CY;0H + HX — CY,0 + HY + HX (5)

to gain insight into the reaction mechanism. Results of the
calculations will provide the molecular information neces-
sary for computational methods used to evaluate the
reaction rate coefficients.

Computational details

The perhalogenated alcohols CF;OH, CCI;0OH, and
CBr;OH have been studied theoretically quite extensively
using quantum mechanical ab initio methods at various
levels of theory. Because the results obtained by the G2
method [33] reproduce the structural parameters and
molecular properties [25-29] of CY30H molecules very
well, we decided to use this level of theory in our
investigations. All quantum mechanical ab initio calcula-
tions were carried out using the Gaussian 03 program [34]
package. Electron correlation was estimated by Maoller-
Plesset perturbation theory at the second (MP2) and up to
the fourth order including all single, double, triple, and
quadruple excitations (MP4SDTQ). The frozen core ap-
proximation was kept throughout.

The rate coefficients of the reactions studied were
analyzed in terms of conventional transition state theory
(TST) [35, 36] according to the equation:

oo o keT AS AH ©)
TST = KTO h €Xp R eXp RT |’

where xr is the tunneling correction factor, o a symmetry
factor related to degeneracy of the reaction path, and kg
and / the Boltzmann and Planck constants, respectively.
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AS” is the activation entropy and AH” the activation
enthalpy of the reaction under investigation. Vibrational
and rotational contributions to the thermodynamic func-
tions were derived by the classical harmonic-oscillator
rigid-rotor approximation (no free or internal rotation was
considered).

The rate coefficient calculation of a reaction with a high
energy barrier should take into consideration a tunneling
effect. This is usually inserted in the rate coefficient by the
tunneling correction factor xr as:

k: KTkTST- (7)

Including the tunneling effect may distinctly improve the
values of the calculated rate coefficients, especially at low
temperatures. The calculated rate coefficients are given in
Tables 4, 5, 6. The tunneling correction factors k1 were
evaluated from the simple Wigner’s expression [35]

1 ()
~]l-——|— 8
r 24 (kBT) ’ ®)
with the imaginary frequencies v* of the transition state

obtained in the geometry optimization performed at a higher
level of theory, i.e., from MP2/6-31G(d) calculations.

Results and discussion

It is well known that the G2 method [33] well reproduces
the structural parameters and molecular properties of a wide
group of organic compounds. The halogenated alcohols
have become the subject of theoretical investigations at
several levels of theory because of their possible role in the
destruction of atmospheric ozone. Results of calculations
show a distinct advantage of the G2 approach, which better
reproduces the molecular properties of this class of
compounds. The reliable values of the thermochemical
properties and vibrational frequencies obtained by G2
methodology for perhalogenated methanols by us [16—18,
24, 29] and other authors [26—28] favor the use of this level
of theory for a description of the structural parameters of
the investigated molecular systems.

The geometries of the molecular structures taking part in
the reaction mechanism CY;OH+HX, (X, Y = F, CI and
Br) were optimized independently at the SCF/6-31G(d) and
MP2/6-31G(d) levels. The molecular arrangements and
definitions of the structural parameters used in the geometry
optimization are given in Fig. 1.

At each level of theory the potential energy surface was
explored independently for the possible existence of
transition states and intermediate complexes. The optimized
geometrical parameters at the MP2/6-31G(d) level, the
harmonic vibrational frequencies (scaled by 0.8929)

obtained at the SCF/6-31G(d) level, and the total G2
energies for the CY;0H, CY,O, and CY3;OH...HX
structures are given in Tables 1, 2 and 3. The structural
parameters of the HX molecules were published elsewhere
[17].

Homogenous decomposition of CF;0H

The most stable structure of CF3;OH appears to possess a
staggered conformation with Cg molecular symmetry.
Trifluoromethanol is a molecular structure with an unusu-
ally strong CF;0—H bond. The bond dissociation energy of
CF;0-H is distinctly greater than that of CH;OH and
comparable to or even slightly greater than that of HO-H in
water. This anomalously large CF;O-H bond strength is
usually attributed to the negative hyperconjugation effect of
the CF5 group [37]. Except for the C-F bond lengths, the
geometrical parameters of CF;0H are very similar to those
of methanol.

The saddle point CF;0H7, denoted by TSIF, for the
decomposition CF;0H— CF,0+HF also has Cy symmetry,
with the C-F; and O-H, bonds oriented almost in parallel
and located in the symmetry plane F{COH,. The lengths of
the breaking bonds (O-Hy: 1.25 A, C-F,: 1.72 A) are 30%
longer than the corresponding bonds in CF;OH. The
thermal decomposition of CF;0H—CF,O+HF is an
almost thermoneutral process, related to the very high
energy barrier of 157 kJ mol ' obtained at the G2 level.
This implies either small values of the rate coefficient or its
strong dependence on temperature.

The pre-reaction adducts CF;OH...HX, designated as
MCI1F-HX, are the most stable structures in all the studied
CF;0H+HX reaction systems. The thermal stabilities of
the MCIF-HX complexes with respect to the
corresponding reactants are very similar and cover a range
of 45-50 kJ mol ' at 0 K. The geometrical parameters of
these hydrogen-bonding complexes retain the values
which appear in the isolated reactants, i.e., the CF;OH
and HX molecules. Only the contact bonds F{-H and XH,
are considerably longer than the analogous H-X bonds in
the hydrogen halides. The binding energy of the pre-
adduct, CF;0H-HX (MCI1F-HX) is described by the
strength of the formed F...H and H,...X hydrogen bonds.
The dissociation energy of MC1F-HX complexes toward
reactants increases as CF;OH..BrH < CF;0H...CIH <
CF3;0H...FH, which is in agreement with the strength of
the H-X bonds, H-Br < H-CI < H-F.

The transition states (CF;OH..HX)7, denoted by TS2F-
HX, describe the decomposition of trifluoromethanol in
the gas phase in the presence of the respective hydrogen
halide molecule HX. Weakening of the H-X bond, which
appears when an HX molecule approaches CF;OH,
enables the formation of a six-atom (C...F;...H...X...
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Fig. 1 Definition of the geo-
metrical parameters of the mo-
lecular structures taking part in
the mechanism of the CY;OH+
HX reactions

Hpy...O) ring structure. This structure supports the abstrac-
tion of F; and Hy atoms from the alcohol and plays an
important role in the reaction mechanism of the HX-
catalyzed decomposition of CF;OH. A comparative
analysis of the structural parameters shows that the
transition states (CF;OH..HX)” are considerably looser
molecular structures than TS1F. The angular parameters of
TS2F-HX, especially of F{CO and COH,, are very close
to those of the isolated CF;OH molecule. The length of the
critical bond H...F,, which is 2.44 A in the CF;OH
molecule, undergoes only a slight change in the molecular
structures of the transition states TS2F-HX to 2.29 A,
2.46 A, and 2.52 A for TS2F-HF, TS2F-HCI, and TS2F-
HBEr, respectively. This is in contrast to TS1F, whose Hy...
F bond length of 1.19 A is half that of the TS2F-HX
structures. That is why the formation of the TS2F-HX
transition states requires considerably fewer changes in the
structures of the reactants than the formation of TSIFE
Consequently, the transformation of the reactant(s) into the
respective transition state in the CF;OH+HX reaction
system proceeds easily and requires less energy than the
thermal decomposition of CF;0H.

The post-reaction adducts CF,O...HF... HX, denoted
by MC2F-HX, are molecular structures which consist of
three subunits, CF,O, HF, and HX, bonded in a
molecular complex. The geometrical parameters of these
subunits are very close to those of the isolated molecules.
The contact distances C...F;, O...Hy, and H,...X
calculated at the MP2/6-31G(d) level are almost twice
those in the isolated reactants. Decay of the post-reaction
adducts MC2F-HX vyields the final reaction products,
CF,0 and HF.

@ Springer

(CY;OH-HX)"

CY,0..HY..HX

The reaction mechanism of the HX-accelerated decom-
position of CF;0H consists of three elementary steps:

CF;0H + HX < CF;0H...HX < CF,0...HF...HX
— CF,0 + HF + HX. (9)

The first and third elementary processes are recombination
and unimolecular dissociation, while the second is related
to an energy barrier.

The profiles of the potential energy surface calculated
for the HX-accelerated decomposition of CF;OH are
shown in Fig. 2. The first elementary step of the reaction
mechanism is related to the formation of the pre-reaction
adduct MC1F-HX. The next step leads, via TS2F-HX,
directly to the other molecular complex, MC2F-HX, which
dissociates to the final reaction products. This mechanism
explains the catalytic influence of the HX molecule, which
acts as a molecular agent in promoting the transport and
exchange of hydrogen atoms inside the formed ring. An
analysis of the structural parameters shows that the
formation of TS2F-HX transition states requires fewer
changes in the structure of the reactants than the formation
of TS1F. This results in a decrease in the activation barrier.
The high energy barrier of 157 kJ mol™' for the thermal
dissociation of CF;0H becomes distinctly smaller under
the influence of hydrogen halides, achieving values of
66 kJ mol ', 94 kJ mol ', and 93 kJ mol ' for the CF;0H
+HF, CF;0H+HCI, and CF;OH+HBr reactions, respec-
tively. The presence of HF leads to the greatest reduction
in the activation barrier, by over 90 kJ mol ™!, whereas HCI
and HBr lower the height of the energy barrier by a little
less than 65 kJ mol .
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Fig. 2 Schematic energy profile for the decomposition of CF;0H in
the absence (left side) and presence (right side) of hydrogen halides,
HX. The energies are calculated at the G2 level including zero-point
energy corrections

Homogenous decomposition of CCl;0H

The optimized structural parameters, vibrational frequen-
cies, and G2-total energies of the molecular structures
taking part in the thermal decomposition of CCI;OH are
given in Table 2. The calculations show that the most stable
structure of CCI;OH appears to possess a staggered
conformation with Cg molecular symmetry, like CF;OH.
The only significant difference in the geometrical parame-
ters of CF;0H and CCl;0OH is related to the C-F and C-Cl
bond lengths. The other structural parameters, bond lengths,
and angular parameters of CF;0H and CCI;0H are very
close to those of the methanol molecule.

The transition state CCI;OH7, denoted by TSICI,
describes the unimolecular dissociation of CCl;0H accord-
ing to the reaction CCl30H— CCl,0+HCI. Some structural
parameters of TS1CI differ distinctly from their counter-
parts in the TS1F structure. TS1Cl has a symmetry of C,
point group. The C-Cl, contact distance of 2.46 A is 0.74 A
longer than the C-F; bond in the CF3OH¢ structure,
whereas the O-H, bond length is a little shorter than that
in CF;OH”. The valence angles Cl-C-O and C-O-H, differ
distinctly from the F-C-O and C-O-H, angles in the TS1F
structure. The relative total energy of CCl;0H” with respect
to CCLOH calculated at the G2 level is found to be
142 kJ mol™'. This value corresponds to the height of the
energy barrier for the unimolecular decomposition of
CCI;0H at 0 K.

The pre-reaction adducts CCI;0H...HX, designated as
MCI1CI-HX, are hydrogen-bonding complexes with a
thermal stability toward the corresponding reactants of 15-
20 kJ mol " at 0 K. This is less than half that of the heat of
formation of the corresponding MCIF-HX from the
reactants CF;OH+HX. The most stable structure is
CCLL3O0H.. HF (MCICI-HF) and the least is CCI;0H...

@ Springer

HBr (MCI1CI-HBr). The geometrical parameters of the
MCICI-HX adducts are very close to those in the isolated
reactants, i.e., of the CCIl3OH, HF, HCI, and HBr
molecules.

The transition states (CCl;0H..HX)”, denoted by TS2CI-
HX, describe the decomposition of trichloromethanol
accelerated by the hydrogen halides HE, HCI, and HBr
The relative G2 energies of TS2CI-HX toward the
respective reactants were calculated as 65, 74, and
65 kJ mol ' at 0 K for TS2CI-HF, TS2CI-Cl, and TS2CI-
Br, respectively. The geometrical configuration of the
(CCL;OH..HX)” structures are similar to their counterparts
(CF;OH..HX)?, but the lengths of the corresponding bonds
differ significantly. Only the lengths of the O-H, bond in
TS2CI-HX are slightly shorter than those in the transition
states TS2F-HX. The other bond lengths of the TS2CI-HX
structures are larger compared with TS2F-HX. A shift of
HX molecules in the direction of the abstracted chlorine
atom Cl; changes the orientation of the CCl;0H skeleton of
TS2CI-HX only slightly compared with the pre-reaction
adducts MC1CI-HX.

The post-reaction adducts CCIl,0...HCI...HX,
denoted by MC2CI-HX, are the most stable molecular
structures in the CCl;0H+HF/HCI/HBr reaction systems.
The molecular complexes MC2CI-HX are loose molecu-
lar structures with long contact distances between the
subunits CCl,0, HCI, and HX. The dissociation energy of
the MC2CI-HX complexes to the final reaction products
calculated at the G2 level are found to be 34, 28, and
24 kJ mol™" at 0 K for MC2CI-HF, MC2CI-HCI, and
MC2CI-HBr, respectively.

The profiles of the potential energy surface for the
decomposition of CCl30H (+HF/HCI/HBr) calculated at
the G2 level are shown in Fig. 3. The thermal decompo-
sition of CCI30H is an exothermic reaction at all the

L TS1CI

150 142

100

TS2CI-HX
~ 74 TS2CI-HCI
- 65 TS2CI-HBr
o L
g 50
5
x
>
> CCI,0H
<
o or
c
w
CCLO+HCI+HX
-42 2
-50 [cci,0+Hel ]
65 MC2CI-HBr
MC2CI-HCI -69 75 MC2CI-HF
MC2CI-HX
-100

Fig. 3 Schematic energy profile for the decomposition of CCI30H in
the absence (left side) and presence (right side) of hydrogen halides,
HX. The energies are calculated at the G2 level including zero-point
energy corrections
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temperatures considered in this study. The energy barrier
for the thermal decomposition of CCI;OH (reaction 3)
calculated at the G2 level is high, 142 kJ mol ', at 0 K.
This is 15 kJ mol ' less than the analogous reaction of
CF;0H. A more complex reaction mechanism is postulated
when the decomposition of CCI30H proceeds in the
presence of hydrogen halides.

CCI30H + HX < CCI30H...HX & CCL0...HCI..HX

— CCLO + HCl + HX
(10)

The approach of the HX molecules to CCl;0H leads to the
formation of the CCI3;0OH..HX (MCICI-HX) molecular
complexes. However, the binding energies of the formed
complexes between the hydrogen halides and trichlorome-
thanol MCI1CI-HX are distinctly lower than those in the
corresponding MC1F-HX intermediates. The reaction path
then leads through the transition state TS2CI-HX to another
molecular complex, MC2CI-HX, which finally dissociates
into reaction products. The threshold energies for these
pathways toward the reactants are distinctly lower than that
for the unimolecular dissociation of CCl;OH. Values of the
reduction of the reaction barrier for the decay of CCl;OH
caused by the presence of HF, HCI, and HBr are found of 77,
68, and 77 kJ mol ", respectively.

Homogenous decomposition of CBr;OH

The calculated properties of the molecular structures taking
part in the reaction mechanism of the decomposition of
CBr;0H in the presence of HF, HCl, and HBr are gathered
in Table 3. A staggered conformation with a symmetry of
the C; point group was found as the most stable molecular
structure of CBr;OH, like CF;OH and CCl;0H. Except for
the C-Br bond lengths, the geometrical parameters of
CBr;0H are close to their counterparts in the CCl30H
and CF;OH molecules.

The saddle point CBr;0H?, denoted by TSI1Br, for the
unimolecular decomposition of CBr;OH has C; symmetry,
like the TS1Cl structure. All the bond lengths in CBr;OH”
are systematically longer than in CF;OH” and CCl;OH?,
whereas the angular parameters are very close to those in
CCI;0H”. The energy barrier for the unimolecular dissoci-
ation CBr;OH— CBr,O+HBr calculated at the G2 level is
133 kJ mol " at 0 K.

The pre-reaction adducts CBr;OH...HX, denoted by
MCI1Br-HX, are molecular complexes with a symmetry of
C; point group. The geometrical parameters of the subunits
of MC1Br-HX, i.e., CBr;OH and HX, are close to those in
the isolated tribromomethanol and hydrogen halides. The
formation of MC1Br-HX complexes is a less exothermic
process than the formation of the corresponding MC1Cl-

HX. The most stable is CBr;OH...HF (MCI1Br-HF).
However, its dissociation energy toward the reactants
CBr;0H and HF is found to be 19 kJ mol ' at 0 K. The
formation of MC1Br-HF is thus a distinctly less exothermic
process than the formation of MC1CI-HF and MC1F-HF.

The transition states (CBr;OH..HX)”, designated as
TS2Br-HX, are critical structures in the kinetic description
of the decomposition of tribromomethanol in the presence
of hydrogen halides, HX. The structural parameters of the
transition states TS2Br-HX show similarity to the
corresponding TS2CI-HX structures. The angular parame-
ters of TS2Br-HX and TS2CI-HX are very close. However,
except for the Hy-X and C-O bond lengths, the bonds of
TS2Br-HX are considerably longer than their counterparts
in TS2CI-HX. The calculated energy barriers are 59, 70,
and 68 kJ mol ! at 0 K for the CBr;OH+HF, CBr;OH+
HCIl, and CBr;OH+HBr reactions, respectively.

The post-reaction adducts CBr,O...HBr...HX, desig-
nated MC2Br-HX, are loose structures with long contact
distances between CBr,O, HBr, and HX. The molecular
complexes MC2Br-HX are the most stable structures in
the CBr;OH+HF/HCI/HBr reaction systems. The dissoci-
ation energy of the post-reaction complexes to the
respective final reaction products cover a range of 14 -
23 kJ mol ' at 0 K.

The mechanism of the decomposition of CBr;OH was
analyzed in terms of the profiles of the potential energy
surface, which are shown in Fig. 4. The unimolecular
decomposition of CBr;OH is the most exothermic among
the reactions under investigation. The energy barrier for the
reaction CBr;OH— CBr,O+HBEr is high, i.e., 132 kJ mol
but lower than those derived for the unimolecular decompo-
sition of CF;OH and CCI3;OH. In the presence of the
hydrogen halides HF, HCIl, and HBr, the mechanism of

150
1518
= 132
100 ]
TS2Br-HX
T 70 TS2Br-HCI
e TS2Br-HBr 68
S e 59 TS2Br-HF
£ 50 ]
£
e
>
>
] CBr,OH  CBr,OH+HX
5 °f C1B; J 1
-
w MC1Br-HCI
C1Br-HF
MC1CI-HX CBr,0+HBr+HX
-50 | -44
CErOwHEr 58 MC2Br-HB.
MC2Br-HCI -65 67 MC2BrHF
MC2Br-HX

Fig. 4 Schematic energy profile for the decomposition of CBr;OH in
the absence (left side) and presence (right side) of hydrogen halides,
HX. The energies are calculated at the G2 level including zero-point
energy corrections
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decomposition of CBr;OH is complex and consists of three
elementary steps.

CBr;OH + HX < CBr;OH...HX & CBr,0...HBr...HX

— CBr;0 + HBr + HX
(11)

Intermediate complexes are formed during the reaction. The
thermal stability of the molecular complexes with respect to
the reactants (MC1Y-HX) and products (MC2Y-HX)
decreases when Y changes in the series from F to Br. The
reaction CBr;OH+HF is related to the lowest energy barrier,
i.e., 59 kJ mol ' at 0 K, and is expected to be the fastest
process among the reactions analyzed.

Rate coefficient calculations

The rate coefficients for the thermal decomposition of
perhalogenated methanols were analyzed in terms of transi-
tion state theory. Let us use a superscript of the rate coefficient
to denote the order of the reaction. In this way, k" is the rate
coefficient for the first-order decomposition of CY3;OH and
k® is related to the second-order reaction CY;OH+HX (the
subscript HX with the rate coefficient symbol k,%)( is used to
distinguish the hydrogen halide reactant). The height of the
energy barrier is clearly the major factor determining the
magnitude of the rate coefficient and its dependence on
temperature. The energy barriers, calculated at the G2 level,
for the reactions CY;OH—COY,+HY (where Y = F, CI,
and Br) are high, over 130 kJ mol .

The calculated rate coefficient k" for the first-order
decomposition of CF;0H is very small, with 3.3x10 ' s™!
at room temperature. This corresponds to an atmospheric
lifetime T of CF;0H with respect to its thermal decompo-
sition of 10° years, which is a few orders of magnitude
greater than the experimental estimates [1]. The rate
coefficients for the unimolecular decomposition of CCI;0H
and CBr3OH are considerably greater than for the decay of
CF;OH. The calculated k" at room temperature are 3.8
107" and 1.9x10 % 5" for the unimolecular dissociation of
CCI10H and CBr;OH, respectively. The rate coefficients
k" can be considered as the high-pressure limiting rate
coefficients Kgisoo, in the theory of unimolecular reactions.
In the temperature range of 200-3000 K, the rate coefficient
Kgiss o for the unimolecular dissociation of the perhalogen-
ated alcohols can be expressed in terms of three-parameter
fits of the form A x(T/300)"xexp(-E/T), as:

Kaiss.o0 (CF30H) = 2.3 x 10" x (T/300)"*

x exp (—18550/T) s! (12)

@ Springer

kdiss,oc(CC13OH) —95x%x 108 x (T/300)0A27

x exp(—16860/T) st (13)
Kyiss o0 (CBr3OH) = 9.2 x 103 % (T/300)°%
x exp (—15680/T) s (14)

The above equations reproduce the values of the theoretical
rate coefficients given in Table 4, 5 and 6 with precision
sufficient for kinetic modeling; the relative errors do not
exceed 10%.

The atmospheric lifetimes of CCI30H and CBr;OH
corresponding to the calculated values of k" are many
orders of magnitude greater than the upper limits measured
experimentally. This strongly suggests that the decomposi-
tion of CF;0OH, CCl;0H, and CBr3OH in the atmosphere
must proceed according to a different and considerably
more efficient reaction mechanism.

In the presence of hydrogen halides, the mechanism of
the decomposition of CF;0H, CCL3OH, and CBr;OH is
more complex due to the formation of the intermediate
complexes MC1Y-HX and MC2Y-HX. If the total pressure
is sufficiently high to enable efficient collision stabilization
of the adducts, the kinetics of the decomposition of CY;0H
molecules should be considered in detail by advanced
kinetic models [38—42]. The general equation, which takes
into account rotational energy, can be derived from RRKM
theory. According to this formalism, the rate coefficient
kggw for the multistep decomposition of CY;OH+HX can
be expressed as:

o0
K = / Wacry—mx (E,J
" hOr—onOnx ; merr-rx (E,J)
Vrsay —mx
W, _ux(E.J
" rsoy—x (E,J) (15)

Wuctry-nx (E,J) + Wrsay —nx (E, J)
" Wucay—nx (E,J)

Wycoy—mx (E,J) + Wrsay—nx (E,J)
x exp (—E/RT)dE

where Or.oy and Qpy are the partition functions of the
alcohol CY3;OH and hydrogen halide HX, respectively,
with the center of mass partition function factored out of the
product Or.opQOpnx and included in z together with the
partition functions of those inactive degrees of freedom
which are not considered by the sums of the states under
the integral. Vr7s,y.my is the threshold energy toward the
reactants CY3;OH+HX and Wrsoyux(E,.J), Waiciv-ux(EJ),
and Wycoy.ux(E,J) denote the sum of the states at energy
less than or equal to £ and with angular momentum J for
the transition state TS2Y-HX and the activated complexes
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Table 4 The rate coefficients calculated for the unimolecular (k™) and the bimolecular HX-accelerated, kg))( decomposition of CF;0H

T Ko ¥ k® K k}(JZF) cua ® kg()il Kepe kl(izl)sr

(K) (s ! ) (cm3 molecule 's™! ) (cm3 molecule 's™! ) (cm3 molecule 's™! )
200 7.67 9.08x10728 521 1.02x1072° 2.53 1.15x107%7 1.92 1.57x107%7
250 527 1.24x107"° 3.69 2.27x1072° 1.98 7.35%x1073 1.59 9.16x1073
300 3.96 3.28x107 1 2.87 3.97x107% 1.68 1.22x107%° 1.41 1.44x107%°
350 3.18 2.43%1071° 237 1.64x10722 1.50 2.51x107%7 1.30 2.86x107%7
400 2.67 1.95x1077 2.05 2.73%x107%! 1.38 1.40x107% 1.23 1.57x107%°
450 232 3.54x107° 1.83 2.50x1072° 1.30 3.29x107% 1.18 3.61x107%
500 2.07 2.29%1073 1.67 1.50x107"° 1.25 4.19x107% 1.15 4.54%107%
600 1.74 1.20x10° 1.47 2.33x107!8 1.17 2.01x1072! 1.10 2.13x1072!
700 1.54 1.07x10? 1.34 1.75x107" 1.13 3.36x10°%° 1.08 3.50x10°%°
800 1.42 3.12x10° 1.26 8.32x1077 1.10 2.90x107"° 1.06 2.98x107"
900 1.33 436x10* 1.21 2.91x1071° 1.08 1.60x107'® 1.05 1.63x107!8
1000 1.27 3.63x10° 1.17 8.17x10716 1.06 6.49x107 1% 1.04 6.54x107 '8
1500 1.12 2.22x108 1.08 2.38x10° 1 1.03 5.48x10°16 1.02 5.33x10°16
2000 1.07 5.78x10° 1.04 1.65%x10° 13 1.02 6.36x107"° 1.01 6.03x107"°
3000 1.03 1.57x10" 1.02 1.62x10712 1.01 1.01x107"3 1.00 9.33x107 "

2 Wigner tunneling correction factor x, calculated for the imaginary frequency of the transition state TSIF (CF;OH™)

® Wigner tunneling correction factor kyyx calculated for the imaginary frequency of the respective transition state TS2F-HX (CF;OH.. HX)”

for the unimolecular dissociations of MCI1Y-HX and
MC2Y-HX, respectively. All computational effort is then
related to calculating the sum of the states, W(E,J). This
calculation depends on the level at which the conservation
of angular momentum is considered and is discussed in

detail in Refs. [40, 41].

However, if the adducts are not stabilized and can
rapidly undergo subsequent processes, the TST rate
coefficient krgr is a very good approximation of the exact
rate coefficient, especially at ambient temperatures [29].
Analysis of the results of the direct calculations of Brudnik
et al. [29] shows that the difference between the rate

Table 5 The rate coefficients calculated for the unimolecular, k" and the bimolecular HX-accelerated, k(;

decomposition of CCl;0H

a 2 2 2

T Ko ) k™ Kur » kl(ﬂv)‘ KHcr ” kg—lél KHBr B kIEI])Br

(K) s (cm®molecule 's ™" (cm®molecule s (cm®molecule 's ")
200 6.59 1.97x1072 3.95 3.56x107%° 3.87 8.67x1072 2.95 8.44x1073°
250 458 4.63x1071° 2.89 6.52x1072¢ 2.84 5.65%x107%8 2.25 1.87x1072°
300 3.49 3.77x10° ! 231 9.76x10 % 2.28 2.05%x1072° 1.87 3.34x107%*
350 2.83 1.21x1077 1.96 3.52x107 % 1.94 1.43x1072% 1.64 1.41x10722
400 2.40 5.13x107° 1.74 5.25x1072! 1.72 3.56x 1072 1.49 2.43%x1072!
450 2.11 5.69%1073 1.58 435x107%° 1.57 447x1072! 1.39 2.29x1072°
500 1.90 2.46x1071 1.47 2.39x10°" 1.46 3.48x107%° 131 1.42x107"
600 1.62 7.05%10! 1.33 3.21x10718 1.32 8.03x10° " 1.22 2.33x107'8
700 1.46 4.03x10° 1.24 2.14x107"7 1.23 8.08x 1078 1.16 1.84x107"7
800 1.35 8.45x10* 1.19 9.26x107 "7 1.18 4.81x107" 1.12 9.08x107"7
900 1.28 9.05%10° 1.15 2.99x1071° 1.14 2.01x1071° 1.10 3.28x1071°
1000 1.22 6.06x10° 1.12 7.87x1071° 1.12 6.53x1071° 1.08 9.47x107'°
1500 1.10 1.89x10° 1.05 1.85x107 14 1.05 2.94x10° 1 1.04 2.97x107 1
2000 1.06 3.44x10'° 1.03 1.15x107 13 1.03 2.55%x10713 1.02 2.12x10713
3000 1.03 6.43x10M 1.01 1.01x10712 1.01 3.08x10712 1.01 2.10x10712

2 Wigner tunneling correction factor x, calculated for the imaginary frequency of the transition state TSICI (CCl;0H")

b) Wigner tunneling correction factor xyx calculated for the imaginary frequency of the respective transition state TS2CI-HX (CClL,OH..HX)*
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Table 6 The rate coefficients calculated for the unimolecular, k" and the bimolecular HX-accelerated, kg))( decomposition of CBr;OH

b (2) b ()
KHcl ) kHc1 KHBr ) Kiip,

(cm3 molecule 's ") (cm3 molecule 's™")

T kY O w®

(K) (s ! ) (cm3 molecule 's™! )
200 7.75 7.18x107%! 4.93 1.79x 10727
250 532 5.25x1071 3.52 1.67x107*
300 4.00 1.93x107° 2.75 1.58x10 22
350 3.21 3.49%10°° 2.28 4.08x1072!
400 2.69 9.62x107* 1.98 4.73x1072°
450 233 7.58x1072 1.78 3.22x10°"
500 2.08 2.49x10° 1.63 1.52x107'8
600 1.75 4.70% 107 1.44 1.61x107"
700 1.55 1.99x10* 1.32 9.18x10° 7
800 1.42 3.33x10° 1.25 3.53x1071¢
900 1.33 3.00x10° 1.19 1.05x10° 1
1000 1.27 1.74x107 1.16 2.58x1071°
1500 1.12 3.58x10° 1.07 5.09x10° 1
2000 1.07 5.30x10" 1.04 2.95x107"12
3000 1.03 8.09x10" 1.02 2.43%107"12

4.03 7.64x107°! 2.89 6.26x107>"
2.94 2.97x107%7 221 2.17x107%7
2.35 7.58x107% 1.84 5.20x107%
1.99 4.11x1073 1.62 2.72x107%
1.76 8.47x107% 1.47 5.49x107%
1.60 9.18x1072! 1.37 5.87x1072!
1.49 6.34x1072° 1.30 4.02x107%°
1.34 1.23x10°18 1.21 7.67x107"°
1.25 1.09x10°"7 1.15 6.74x10° '8
1.19 5.88x107"7 1.12 3.62x107"7
1.15 2.28x107'° 1.09 1.40x107'6
1.12 7.00x1071¢ 1.08 425x107'6
1.05 2.65x10" 1.03 1.56x10 "
1.03 2.11x10° 1 1.02 1.21x1071
1.01 2.34x10712 1.01 1.30x107'2

2 Wigner tunneling correction factor k, calculated for the imaginary frequency of the transition state TS1Br (CBr;OH”)

® Wigner tunneling correction factor kyyx calculated for the imaginary frequency of the respective transition state TS2Br-HX (CBr;OH..HX)”

coefficients A obtained from conventional transition state
theory and kﬁj}d from Eq. (11) for CF;O0H+H,O and
CCI;0H+H,0 reactions are, at temperatures below 1000 K,
practically negligible, and even at 3000 K only slightly
exceed 1% and 5% for CF;0H and CCIl;0H, respectively.
Therefore the conventional transition state theory is a useful
tool in describing reaction kinetics, especially if one considers
the precision of kinetic measurements.

Tables 4, 5, 6 also present the calculated values of the
bimolecular rate coefficients, denoted by k%)(, for the
CY;0H+HX (X = F, Cl, and Br) reaction systems. The
values of the second-order rate coefficients kg))( are ordered
similarly to the rate coefficients k'" for the unimolecular
dissociation of the perhalogenated alcohols. For the
selected HX molecule, the fastest are reactions of CBr;OH
and the slowest those of CF;OH. Analysis of the calculated
rate coefficients indicates HF as the most effective
accelerator. The presence of HF causes a decrease in the
activation energy for the decomposition of CF;0H by over
90 kJ mol '. For CCl;0H and CBr;OH, this reduction is
lower, being 77 and 73 kJ mol ', respectively. The catalytic
influence of HCl and HBr is distinctly weaker. However,
both HCI and HBr result in lowering the energy barrier for
the decomposition of CF;0H, CCI;0H, and CBr;OH by
63-69 kJ mol .

The lowest energy barrier in the CY;OH+HX reaction
systems of 59 kJ mol ' occurs in the reaction of
tribromomethanol with hydrogen fluoride. This results in
the highest values of the rate coefficient for the reaction
system CBr;OH+HF, with k® of 1.6x10%* cm’mole-

@ Springer

cule 's™" at 300 K. The highest value of the energy barrier
of 94 kJ mol ™! is related with CF;OH+HCI. This implies
the considerably lower value of the second-order rate
coefficient of 1.2x102° cm’molecule 's™" at 300 K.

The differences in the heights of the energy barriers are
reflected in the magnitudes of the calculated rate coeffi-
cients. For the bimolecular decomposition of CF;0H, the
largest one, i.e., 4.0% 1072 cm®molecule 's7! at 300 K, is
the rate coefficient k'® for the CF;OH+HF reaction system
due to its having the lowest activation barrier. The energy
barriers for the decomposition of CF;0H in the presence of
HCI and HBr are higher by over 25 kJ mol ' compared
with HF. Consequently, the rate coefficients kg&l and kg%r
are a few orders of magnitude lower and close to one
another, being 1.2x107*? and 1.4x10"*° cm’*molecule 's™
at 300 K for the CF;OH+HCI and CF;OH+HBr reactions,
respectively.

The rate coefficients for the bimolecular decay of
CCI30H depend only slightly on the kind of hydrogen
halide. The values of k@ calculated at 300 K are 9.8x
102*, 2.0x10 %, and 1.1x10*° cm’molecule 's™! for
CCl3,OH+HF, CCI3;0H+HCI, and CCl;OH+HBr, respec-
tively. The influence of the HX molecule on the decompo-
sition of CBrzOH distinctly depends on the type of
hydrogen halide. The rate coefficient k'® for CBr;OH+
HF is 1.6x107*2 cm®molecule 's " at 300 K. This is almost
three orders of magnitude greater than the rate coefficients
of 7.7x107* and 5.2x107* cm’molecule 's”' for the
CBr;OH+HCI and CBr;OH-+HBr reactions, respectively.
The temperature dependence of the rate coefficients for the
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HX-catalyzed bimolecular decomposition of trifluorome-
thanol can be expressed in the form:

k) (CF;0H 4 HF) = 4.6 x 107" x (T/300)**°
x exp(—6970/T) cm’*molecule™'s™!

(16)

k) (CF;0H + HCl) = 1.4 x 107" x (T/300)***

x exp (—10410/T) cm’molecule 's™"

(17)

k) (CF30H + HBr) = 1.3 x 10~ x (T/300)**

x exp(—10340/T) cm*molecule 's™!

(18)

Similar expressions also describe the bimolecular decom-
position of trichloromethanol

k? (CCL,0H + HF) = 6.3 x 10~ x (T/300)*"
x exp (—6800/T) cm’*molecule's™!

(19)

k) (CCI30H + HCI) = 8.1 x 10 x (T/300)*7

x exp (—8025/T) cm*molecule 's™!
(20)

k® (CCI;0H + HBr) = 4.2 x 107" x (T/300)*%

x exp (—6990/T) cm’*molecule's™!

(21)

and tribromomethanol

k® (CBr;OH + HF) = 8.2 x 107" x (T/300)**
x exp(—6045/T) cm’*molecule 's™!

(22)

k? (CBr;OH + HCI) = 5.0 x 10" x (T/300)*"*

x exp (—7490/T) cm’molecule™'s!.

(23)

k) (CBr;OH + HBr) = 2.8 x 10 x (T/300)*"*

x exp (—7430/T) ecm’molecule s~
(24)

The reaction rate at a given temperature is determined by either
the magnitude of the rate coefficient or the concentrations of
the reactants. The values of the activation barrier for the
decomposition of CY3;OH in the presence of hydrogen halides
are similar to that caused by the presence of water [29].
However, the concentration of water vapor in the atmosphere
(10" molecules cm ™ at altitudes below 5 km [1]) is
incomparably greater than that of hydrogen halides. The
presence of hydrogen halides may efficiently accelerate the
decomposition of CY;OH alcohol only when the concentra-
tion of HX is sufficiently high to satisfy the inequality
kg} [HX] >> k") .Decay of the alcohol molecule CY;OH
leads to the formation of the respective hydrogen halide HY
molecule. The decomposition of CY;OH is always catalyzed
by HY molecules, which are continuously formed in the
reaction. However, depending on the concentration of HY,
this autocatalytic effect can be positive or negative.

For an HF concentration lower than 10'° molecules cm >
at room temperature, the rate of the bimolecular reaction
CF;OH+HF is less than that of the first-order decomposi-
tion of CF;0H, and HF molecules may only inhibit the
reaction rate as a result of binding reactants in the
CF;0H...HF molecular complex. The other hydrogen
halides, HCI and HBr, can stimulate the decomposition of
CF;0H when they are present in the reaction area at
sufficiently high concentrations. Genuine acceleration of
the reaction rate requires a concentration of HCl and HBr
higher than 3 x 10" molecules cm * at 300 K. The levels of
HCl in ambient air are not well established, but are
probably in the low-ppb range (10'°-10"" molecules cm >)
[1]. The atmospheric concentration of HBr is even smaller,
on average a few ppt. This is clearly insufficient for
promoting the removal of atmospheric CF;OH, similarly as
CCI30H and CBr;OH.

Summary

The main aim of the present study is related to a theoretical
analysis of the kinetics of the gas-phase decomposition of
the perhalogenated methanols CF;OH, CCI;0H, and
CBr;OH. Theoretical investigations based on ab initio
calculations of the reaction systems at the G2 level were
performed to gain insight into the reaction mechanism. The
results of the calculations also allow an estimation of the
reaction energetics and the molecular properties of the
structures taking part in the reaction.
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The results of theoretical investigations show that the
unimolecular dissociation of CF;OH, CCI;OH, and
CBr;OH proceeds with a high energy barrier. This implies
low values of the rate coefficients for the reactions under
investigations. Values of the high-pressure limiting rate
coefficients kgiss o and their dependence on temperature for
the thermal dissociation of CF;0H, CCl;0H, and CBr;OH
were derived using the conventional transition state theory
in the temperature range 200-3000 K.

The kinetics and mechanism of the decomposition of the
investigated alcohols in the presence of the hydrogen
halides HF, HCI, and HBr were also analyzed theoretically.
The calculated profiles of the potential energy surface of the
reaction systems show that considerably lower energy
pathways are accessible for the decomposition of CF;0H,
CC1;0H, and CBr3OH in presence of hydrogen halides.
The mechanism of the reactions appears to be complex and
consists of three consecutive elementary processes with the
formation of pre- and post-reaction adducts. The thermal
stability of these molecular complexes is determined by the
strength of the respective hydrogen bonds formed during
reactions. In consequence, the binding energy of the formed
adducts increases in agreement with the strength of the
formed H...X bonds, H...Br < H...Cl < H...F.

The presence of hydrogen halides distinctly decreases
the energy barrier for the bimolecular decomposition of the
alcohols CF;0H, CCIl;0H, and CBr;OH. Therefore the
HX-accelerated bimolecular decomposition of the haloge-
nated alcohols may proceed very rapidly if the concentra-
tion of the hydrogen halide in the reaction system is
sufficiently high. However, the atmospheric concentrations
of the hydrogen halides are small. Consequently, the
reactions CF;0H/CCl;0H/CBr;OH+HX are of no impor-
tance under typical atmospheric conditions.

The investigated reactions CF;OH/CCl;OH/CBr;OH+
HX may, however, acquire significance in the kinetic
modeling of the complex reaction systems studied on a
laboratory scale, especially in the case of reactions which
proceed with the formation of the perhalogenated alcohols
CF;0H, CCI30H, and CBr;OH in the presence of sizable
concentrations of the halogen halides. Under these con-
ditions, the rate of decay of the perhalogenated methanols
may strongly depend on the concentrations of hydrogen
halides. The values of the rate coefficients calculated in this
study allow a description of the kinetics of the reactions
under investigation in a wide temperature range. They
should be useful in the kinetic analysis and modeling of
such reaction systems.
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